Revised Response Action Plan

Hillcrest Redevelopment Site Saint Paul, Minnesota MPCA Brownfields Site ID: BF0001281 MDA Project No.: JAL101091523

Prepared for

Saint Paul Port Authority

Professional Certification:

I hereby certify that this plan, document, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Geologist under the laws of the State of Minnesota.

Mark D. Keefer, PG

Business Unit Leader, Senior Scientist

License Number: 47350

Project B1903316.00 September 1, 2022

Braun Intertec Corporation

INTERTEC
The Science You Build On.

116586214.1 0049912-00041

Braun Intertec Corporation 1826 Buerkle Road Saint Paul, MN 55110 Phone: 651.487.3245 Fax: 651.487.1812 Web: braunintertec.com

September 1, 2022

Mr. Josh Leable Project Manager, Incident Response Unit Minnesota Department of Agriculture 625 Robert Street St. Paul, MN 55155

Re: Revised Response Action Plan

Hillcrest Redevelopment Site

St. Paul, Minnesota

MPCA Brownfields Site ID: BF0001281 MDA Project No.: JAL101091523

Dear Mr. Leable/Mr. Nichols:

Project B1903316.00

Mr. Andrew Nichols Project Manager Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155

On behalf of the Saint Paul Port Authority, Braun Intertec Corporation has prepared the attached revised Response Action Plan (RAP) for the Hillcrest Redevelopment Site located in St. Paul, Minnesota (Site). The original RAP, dated March 1, 2022, was prepared by Braun Intertec and submitted to the MDH/MPCA for review and approval (March 2022 RAP). The March 2022 RAP was approved by the MPCA in a letter dated May 3, 2022 and approved by the MDH in a letter dated April 29. 2022. Both the MPCA and the MDH approval letters requested some adjustments and additional information as a condition of the RAP approvals. In addition, after the March 2022 RAP was submitted to the MDA/MPCA, the soil cleanup standards (soil reference values) for several compounds, and specifically mercury, were updated by the MPCA in April 2022. Braun Intertec has prepared this Revised RAP for MDH and MPCA review and approval to address approval conditions identified in the MDA and MPCA approval letters and to update the RAP in accordance with the revised soil cleanup standards.

This Revised RAP describes response actions that will be implemented to manage contaminated soils, sediments and other media required to obtain environmental assurances and RAP implementation approvals from the Minnesota Department of Agriculture (MDA) and Minnesota Pollution Control Agency (MPCA) and facilitate planned redevelopment at the Site. The RAP includes a Construction Contingency Plan (CCP) that provides procedures for managing unanticipated contaminated materials that may be encountered during project construction.

Review and approval of the enclosed Revised RAP is requested from both the MDA and MPCA voluntary programs by no later than Monday October 31, 2022 to facilitate the submittal of cleanup grant applications on Tuesday, November 1, 2022.

If you have any questions or comments regarding this report or the project in general, please contact Ken Larsen at 952-995-2455 or Mark Keefer at 952.995.2493.

Sincerely,

BRAUN INTERTEC CORPORATION

Kenneth A. Larsen, PE, PG

Vice President/Principal Scientist

Mark D. Keefer, PG

Business Unit Leader, Senior Scientist

c: Monte Hilleman, Saint Paul Port Authority

Steve Heurung, Stoel Rives

Attachment:

Response Action Plan

Table of Contents

Desc	ription		Page		
A.	Introd	luction	1		
	A.1.	Planned Redevelopment	2		
	A.2.	Project Objectives	2		
	A.3.	Anticipated Schedule			
В.	Site Background				
	B.1.				
	B.2.	Site Land Use History			
	B.3.	Site Assessments/Investigations by SPPA			
		B.3.a. Overview	4		
		B.3.b. Phase I Environmental Site Assessment	4		
		B.3.c. Phase II Environmental Site Assessment	6		
		B.3.d. Remedial Investigation	7		
		B.3.e. Additional Soil Sampling and Analysis - Wetland South of Maintenance Area	э11		
	B.4.	Published Geologic Information	11		
		B.4.a. Topography	11		
		B.4.b. Geology	11		
		B.4.c. Hydrogeology	12		
	B.5.	Exposure Risk	12		
C.	Site C	Site Conceptual Model			
	C.1.	Current Site Use and Conditions	13		
	C.2. Stratigraphy		14		
		C.2.a. Fill soils	15		
		C.2.b. Native Soil	15		
		C.2.c. Groundwater Conditions	16		
	Conta	Contaminants of Concern			
		C.2.d. Petroleum Compounds	17		
		C.2.e. Agricultural Chemicals	17		
		C.2.f. Non-Agricultural Chemicals	18		
D.	Conta	minant of Concern Locations and Characteristics	19		
	D.1.	Golf Course Areas	19		
		D.1.a. Agricultural Chemical Storage/Maintenance Area	19		
		D.1.b. Water Fill/Chemical Mixing Area	20		
		D.1.c. Greens and Tee boxes	20		
		D.1.d. Fairways	21		
		D.1.e. Rough Areas			
	D.2.	Golf Course Support Areas	22		
		D.2.a. Clubhouse Area			
		D.2.b. Former Pool house and Tennis Courts (Buried Debris Area)	23		
	D.3.	Existing Wetlands			
	D.4.	Ponds			
	D.5.	Southern Berm			
	D.6.	Soil Vapor			
	D.7.	7. Groundwater/Surface Water			
E.	Poten	ntial Receptors and Exposure Pathways2			

Table of Contents (continued)

	E.1.	Contaminant Impact Survey				
		E.1.a. Human Exposi	ure to Contaminated Soil	26		
		E.1.b. Groundwater.		26		
		E.1.c. Surface Water	·	27		
		E.1.d. Other Potentia	al Receptors	27		
	E.2.	·				
	E.3.	Leaching Pathway				
	E.4.	Water Ingestion Pathy	vay	27		
F.	Clean	p Standards and Definit	ions	28		
G.	Propo	oposed Response Actions				
	G.1.	Response Actions Rela	ted to Contaminated Media Excavation	30		
		G.1.a. Site Clearing, G	Grubbing and Tree Removal/Replanting	31		
		G.1.b. Abandonment	t of the Existing Wells	32		
		G.1.c. Demolition of	Existing Buildings and On-Site Structures	33		
		G.1.d. Management	of Surface Water and Shallow Groundwater at the Site to Facility	tate		
		Soil Remediati	ion	34		
		G.1.e. Excavation of	Mercury Impacted Soil/Sediment and Disposal Off-Site	34		
		G.1.f. Management	of Mercury-Impacted Soils Above Background Concentrations,	but		
		Meeting Site C	Cleanup Standards	35		
		G.1.g. Excavation of	PAH Contaminated Soil and Soil with Intermixed Debris	36		
		G.1.h. Petroleum Imp	pacted Soil Excavation and Disposal Off-Site	36		
	G.2. Short Term Monitoring/Temporary Engineering Controls		g/Temporary Engineering Controls	37		
		G.2.a. Dust Control a	and Air Monitoring	37		
		G.2.b. Storm Water F	Pollution Prevention and Sediment Control Plan	37		
		G.2.c. Site Access		37		
	G.3.	Permits		38		
	G.4.	Methods and Procedu	res	38		
		G.4.a. Soil Screening		38		
		G.4.b. Confirmation S	Sampling	39		
		G.4.c. Areas with No	Known Impacts or Debris Present	41		
		G.4.d. Sample Labelii	ng and Handling	42		
		G.4.e. Soil Import		42		
H.	Soil N	Soil Management Plan4				
	H.1.	Existing Cover and Ger	neral Plan for Site Soils	43		
	H.2.	Site Soil Types		44		
	H.3.	. Site Earth Work Requirements for Existing Conditions		44		
		H.3.a. Environmenta	l Soil Classifications	44		
	H.4.	Future Soil Placement	Considerations	45		
		H.4.a. Pavements an	d Building Pads	45		
		H.4.b. Utility Corrido	rs	45		
		H.4.c. Greenspace/W	Vetland Areas	46		
	H.5.	Site Controls		46		
		H.5.a. Fugitive Dust		47		
		H.5.b. Dust Control V	While Working	47		
	H.6.	Stockpile Managemen	t	48		
	H.7.	Groundwater/Surface Water Management				
I.	Const	uction Observation and	Documentation Plan	50		
	l.1.	Field Reports		50		

Table of Contents (continued)

	1.2.	Forms	· ·	50		
	I.3.	Proble	em/Deficiency Identification and Corrective Action	51		
	1.4.	Plan M	Nodification	51		
	1.5.	Photog	graphs	51		
١.	Work Controls					
	J.1.					
	J.2.	2. Environmental Monitoring During the Work				
	J.3.	Erosio	n Control	52		
۲.	RAP I	mplemen	ntation Report	53		
	Construction Contingency Plan					
	L.1.	. Notification Requirements				
	L.4.	Prelim	56			
	L.5.	Isolatio	57			
	L.6.	Emerg	57			
	L.7.	Potent	tial Contingency Response Actions	58		
		L.7.a.	Petroleum-Contaminated Soils	59		
		L.7.b.	Debris and Asbestos-Containing Materials	59		
		L.7.c.	Non-Petroleum-Impacted Soil	59		
		L.7.d.	Storage Tanks or Drums	59		
		L.7.e.	On-Site Wells and Septic Systems	60		

Figures

- 1: Site Location Map
- 2: Site Diagram
- 3: Golf Course Layout
- 4: Investigation Locations
- 5: Soil Analytical Exceedances
- 6: Clubhouse Are Analytical Results
- 7: Investigation Locations: Maintenance Area & Adjacent Wetland
- 8: Fairway Sampling Plan
- 9: Fairway Sampling Soil Analytical Results
- 10: Contaminated Soil Excavation Areas
- 11: Site Plan
- 12: Well Locations
- 13: Hillcrest Redevelopment Site -Demolition Area
- 14: Proposed Confirmation Sampling Plan, Typical Approach

Tables

- 1: Fairways, Greens, Roughs, and Tee Boxes, RI Hand Auger Soil Analytical Results
- 2: Soil Analytical Results: Wetlands, Ponds and Associated Areas
- 3: Soil Borings Soil Analytical Results
- 4: Soil Analytical Results Hand Augers in Clubhouse Area
- 5: Agricultural Soil Boring Soil Analytical Results
- 6: Test Trenches Soil Analytical Results
- 7: Soil Arsenic and Mercury Analytical Results All Data

Table of Contents (continued)

- 8: Soil Arsenic and Mercury Analytical Results Greens
- 9: Soil Arsenic and Mercury Analytical Results Tee Boxes
- 10: Soil Arsenic and Mercury Analytical Results Fairways
- 11: Soil Arsenic and Mercury Analytical Results Rough
- 12: Borrow Area Analytical results
- 13: Water Analytical Results
- 14: 2022 Additional Soil Sampling Results

Appendices

- A: Development Plan
- B: Additional Sampling Laboratory report/MDH checklist South Wetland Area
- C: Well Construction Details Table
- D: Figure 6B Groundwater Exceedances
- E: Contaminant Impact Survey Documents
- F: RAP Implementation forms

A. Introduction

Braun Intertec Corporation was retained by the Saint Paul Port Authority (SPPA) to prepare this Revised Response Action Plan (RAP) for the proposed Hillcrest Redevelopment Site located in St. Paul (Site). The original Site RAP, dated March 1, 2022, was prepared by Braun Intertec and submitted to the Minnesota Department of Agriculture (MDA) and the Minnesota Pollution Control Agency (MPCA) for review and approval (March 2022 RAP). The March 2022 RAP was approved by the MPCA in a letter dated May 3, 2022 and approved by the MDH in a letter dated April 29. 2022. Both the MPCA and the MDH approval letters requested some adjustments and additional information as a condition of the RAP approvals. In addition, after the March 2022 RAP was submitted to the MDA/MPCA, the soil cleanup standards (soil reference values) for several compounds, and specifically mercury, were updated by the MPCA in April 2022. Braun Intertec has prepared this RAP for MDH and MPCA review and approval to address approval conditions identified in the MDA and MPCA March 2022 RAP approval letters and to update the RAP in accordance with the revised soil cleanup standards.

This RAP describes response actions that will be implemented to secure environmental assurances and RAP implementation approvals from the MDA and MPCA and facilitate the planned mixed-use redevelopment of the Site. The environmental response actions in this RAP include procedures for managing contaminated soil, sediment, and groundwater impacts identified by Remedial Investigation (RI) of the Site. The RAP also includes a Construction Contingency Plan (CCP) that describes requirements for responding to unanticipated contaminated materials that may be encountered during project construction. This RAP is being submitted to the MDA Voluntary Investigation and Cleanup (AgVIC) Program, the MPCA Voluntary Investigation and Cleanup (VIC) Program, and the MPCA Petroleum Brownfields (PB) Program for review and approval. If any modifications or changes to the RAP are required, an addendum or amendment outlining such modifications or changes will be submitted to the MDA and MPCA. The Site is enrolled into the respective voluntary programs and was assigned MDA Project No.: JAL101091523 and MPCA Brownfields Site ID: BF0001281.

This RAP generally follows MDA Guidance Document Agricultural Chemical Incident Remedial Investigation Report and Corrective Action Plan, Guidance Document 10 (September 2001) and MPCA Guidance Document *Brownfield Program Response Action Plans (October 2018)*, including the inclusion of a CCP for responding to unexpected environmental conditions on the Site. Details on managing different types of soil contamination at the Site to ensure that the excavation, stockpiling, and handling of soils at the Site are protective of human health and the environment, both in the short-term during construction and for the long-term during subsequent Site use are also provided.

Upon completion of the response actions addressed in this RAP, the SPPA anticipates requesting RAP Implementation Report Approval Letters and No Further Action Determinations from the MDA and MPCA. This RAP was prepared on behalf of and for use by the Saint Paul Port Authority in accordance with the contract between the Saint Paul Port Authority and Braun Intertec. No other party has a right to rely on the contents of this Revised Response Action Plan without the written authorization of Braun Intertec.

A.1. Planned Redevelopment

The planned redevelopment of the Site will result in a new multi-use development. The redevelopment will include areas of light industrial and commercial use, high, medium, and low-density residential use, associated parking/drive areas, new infrastructure, recreational park use, and passive greenspace areas. Added infrastructure included with the redevelopment includes installing electric, sewer and water utility lines, and constructing several public streets and stormwater management systems. Conceptual Maps depicting the current planned redevelopment configuration and future land uses is included as Appendix A.

A.2. Project Objectives

This RAP includes the environmental response actions required to address known contaminated media to obtain environmental assurances and RAP implementation approvals from the MDA AgVIC Program, MPCA VIC Program, and MPCA PB Program and facilitate planned site use. Specifically, upon completion of the response actions addressed in this RAP, the SPPA anticipates requesting RAP Implementation Report Approval Letters and No Further Action Determinations from the MDA and MPCA.

A.3. Anticipated Schedule

Response action implementation in accordance with this RAP is expected to start in April 2023 and will be coordinated with earthwork activities related to mass grading for redevelopment and construction of public roadways, associated utilities, and related infrastructure. The response actions are anticipated to be completed by December 2023; however, the sequencing of response actions and related completion timeframes may be modified to prioritize site grading and infrastructure construction at locations of the Site where redevelopment will occur first.

After implementation of the RAP across the Site, Redevelopment construction on the individual parcels comprising the Site will occur in phases, with construction on the first redevelopment parcel to start as early as October 2023 (with completion dates in 2024). Remaining parcels at the Site will be redeveloped

over time with full capacity of the redeveloped Site anticipated by approximately 2033. Additional information on response action sequencing and completion dates will be provided to the MDA and MPCA when the information becomes available and in advance of construction.

B. Site Background

B.1. Site Location and Description

The Site is located at 2200 Larpenteur Avenue East in Saint Paul, Ramsey County, Minnesota (see Figure 1).

The Site is approximately 112 acres in size and includes six separate parcels. At the time of the site assessments and investigations supporting this RAP, the Site consisted of a vacant 18-hole golf course that included club facilities, driving range, practice putting greens, and support buildings. A vacant clubhouse with associated paved parking lot, swimming pool, vacant pool building, vacant golf cart sheds, and vacant garages were located in the northwest corner of the Site. The former fairways extended south of the clubhouse. A vacant maintenance area was in the southeastern area of the Site that includes a former maintenance shop building, former maintenance storage building, and former agricultural chemical storage and mixing buildings (i.e., agricultural chemical buildings). Earthen berms were located along the southeastern Site boundary next to and south of the former maintenance area. Two unsealed water wells and two small petroleum above ground storage tanks (ASTs) were also identified at the Site. A site sketch is included as Figure 2.

According to the 2019 Former Hillcrest Golf Course Site Phase I Environmental Site Assessment (Phase I ESA), the Site had been operated as a golf course since the 1920s until it was closed in 2017. The former golf course layout is shown on Figure 3. The surrounding area land use has generally consisted of cultivated agricultural land progressively followed by residential and light commercial (retail) development.

B.2. Site Land Use History

Prior to the 1920s the Site was cultivated agricultural land or grazing land. The Hillcrest Golf Course was developed in the 1920s as a full size 18-hole private golf course/club that included clubhouse facilities, a swimming pool with pool building, driving range, practice putting greens, tennis courts, and various support buildings on the north side of the Hillcrest Site, and agricultural chemical storage buildings and maintenance shop on the southeastern side. Earthen berms, which contain contaminated soils and

intermixed debris, are located along the southeastern boundary of the Site next to and south of the maintenance area and two unsealed water wells. The golf course ceased operations in 2017 and the Site has remained vacant since that time.

During use as a golf course, various petroleum products were used and stored on the Site. Specifically, three past petroleum releases have been reported at the Site, Leak ID# 5050; Leak ID# 6222; and Leak ID# 18327. Based on the property use at the time of the releases, all three petroleum release leak sites were closed by the MPCA following review of the follow up site investigations, or in the case of Leak ID #6222, review of the limited soil cleanup actions taken following tank removal (i.e., excavation, hauling and treatment of an estimated 180 tons of petroleum-impacted soil).

B.3. Site Assessments/Investigations by SPPA

B.3.a. Overview

Previous environmental investigations performed at the Site have identified soil, sediment, soil vapor, and groundwater impacts associated with the past use of the Site as a golf course. The SPPA performed a Phase II Environmental Site Assessment (ESA) of the Site to investigate the Recognized Environmental Conditions (RECs), Historical RECs (HRECs), and Controlled RECs (CRECs) identified in the Phase I ESA. In addition, the SPPA recently performed a remedial investigation (RI) of the Site in support of the planned redevelopment. Results of previous environmental investigations are included in the document entitled: Remedial Investigation Report, Former Hillcrest Golf Course Site, St. Paul, Minnesota, dated March 1, 2022 (2022 RI Report). The following sections summarize the results of the previous environmental assessments and investigations completed by the SPPA.

B.3.b. Phase I Environmental Site Assessment

Prior to property acquisition in June 2019, the SPPA retained Braun Intertec to complete a Phase I ESA of the Hillcrest Site in accordance with ASTM Standard Practice E1527-13. The Phase I ESA results were documented in a report entitled: *Phase I Environmental Site Assessment, Former Hillcrest Golf Course, McKnight Road and Larpenteur Avenue East, St. Paul, Minnesota*, dated June 10, 2019 (2019 Phase I ESA).

In summary, the 2019 Phase I ESA identified the following RECs related to the Site:

- the presence of remaining contamination from past petroleum tank leaks,
- 2) the potential for agricultural chemical releases to the soil and groundwater,
- 3) the potential for the repeated historical application of fungicide to result in an accumulation of mercury in the soils over time, and

4) the potential presence of contaminated soils and buried regulated waste materials in berms present at various locations. No HRECs or CRECs were identified for the Site in the 2019 Phase I ESA.

Braun Intertec amended the 2019 Phase I ESA in response to the MDA's letter to the SPPA dated July 19, 2019. The amended Phase I ESA is presented in the letter entitled: *Phase I Environmental Site Assessment Addendum, Agricultural Chemical Incident Investigation, Former Hillcrest Golf Course, St. Paul, Minnesota*, prepared by Braun Intertec and dated August 15, 2109 (2019 Phase I Addendum).

The 2019 Phase I Addendum identified eight high risk areas (HRAs) at the Site consisting of the following:

- Agricultural chemical storage buildings loading areas.
- Damaged floors in the agricultural chemical storage buildings (3 buildings).
- Agricultural chemical mixing/washout area.
- Drainage area adjacent to mixing/wash area.
- Berms on eastern portion of Property.
- Golf greens and practice greens constructed before 1994.
- Tee boxes.
- Fairways.

As requested by the MDA during an October 29, 2019, site walk, Braun Intertec added (a) the primary pesticide/fertilizer storage building, and (b) the associated loading area as standalone HRAs.

In addition, as part of the 2019 Phase I Addendum, Braun Intertec reviewed the historical agricultural pesticide and fertilizer use at the former golf course. The facility primarily used granular and soluble fertilizers consisting of various brands and formulations of nitrogen, potassium, and phosphorus-based fertilizers. The majority of these fertilizers were applied to greens, tee boxes, and fairways with occasional applications to roughs and around the clubhouse area.

The facility used a variety of pesticides including fungicides, herbicides, insecticides, and algicides for various applications across the golf course. Based upon available usage records it appears that these were used in smaller quantities primarily on the greens, but occasionally on the fairways, approaches, and tees, and sporadically around the clubhouse. Common pesticides used included 2, 4-D, imidacloprid, Dicamba, chlorothalonil, iprodione. Reportedly, the facility had discontinued use of mercury-based fungicides sometime prior to 1994.

B.3.c. Phase II Environmental Site Assessment

In 2019, Braun Intertec conducted a Phase II ESA, in support of the SPPA acquiring the Site, the results of which are presented in the report entitled: *Preliminary Phase II Environmental Site Assessment, Former Hillcrest Golf Course, St. Paul, Minnesota*, dated June 10, 2019 (2019 Phase II ESA).

The 2019 Phase II ESA consisted of geotechnical and environmental soil borings, temporary perched groundwater monitoring wells, soil vapor probes, and a sub-slab vapor point. In addition, soil samples were collected throughout the former golf course including from the maintenance berm.

The following provides a summary of the conclusions of the 2019 Phase II ESA:

- Past and current Phase II ESAs detected both non-petroleum and petroleum compounds in soil at various locations and depths across the Site. The highest concentrations of mercury impacts were detected in soil samples collected from the former greens and related fringe/apron areas. Mercury concentrations were detected consistently on tee boxes, sampled fairways, and in soil near the "mixing area" where fungicides are known to have been mixed with water and loaded into the turf management equipment for use on the golf course. The mercury concentrations in the fairways and tee boxes varied with some soil sample results exceeding the Residential and Commercial/Industrial soil reference values (SRVs) in-place at the time of the investigation.
- Additional non-petroleum impacts to soil from polycyclic aromatic hydrocarbons (PAHs) and arsenic were also detected at a few locations at the Hillcrest Site, but these impacts are relatively minor in extent and magnitude. Petroleum impacts were also detected at the Hillcrest Site and were limited to the area of the three "closed" petroleum leak sites that were discussed previously.
- Several soil berms with intermixed debris and solid waste are present in the wooded area south of the maintenance shop on the east side of the property and adjacent to McKnight Road. Debris types observed in the soil include brick, asphalt, concrete, carpet, drain tile, conduit, plastic, etc. A composite soil sample consisting of several discrete soil samples collected from different areas of the soil berms with observed debris detected mercury at a concentration exceeding the Commercial/Industrial SRV in-place at the time of the investigation.
- Groundwater samples collected during the Preliminary Phase II ESA did not detect evidence of significant or widespread contamination by petroleum compounds or hazardous

substances. The only detection of a contaminant in groundwater above a drinking water standard was diesel range organics (DRO) in the sample collected near the previously investigated and closed petroleum leak sites.

Low concentrations of volatile organic compounds (VOCs) were detected in soil vapor samples collected during this investigation. However, no VOCs in the soil vapor were detected at concentrations above the MPCA action levels requiring consideration for redevelopment.

The 2019 Phase II ESA report concluded that additional environmental investigation(s) would be needed to further delineate and define the magnitude and extent of the identified impacts at the Site in consideration of future redevelopment.

B.3.d. Remedial Investigation

Braun Intertec conducted a RI to further define the impacts identified during the 2019 Phase II ESA. The scope of the RI was detailed in the Remedial Investigation Work Plan dated March 27, 2020 (RI Work Plan), with minor additional sampling addressed in the RI Work Plan Addendum dated June 12, 2020, and RI Work Plan Addendum #2 dated October 7, 2021.

The RI Work Plan was approved by the MDA Incident Response Staff on May 5, 2020, and the RI Work Plan Addendum was approved by email on June 23, 2021. The investigation was partially funded from a U.S. Environmental Protection Agency (EPA) Assessment Grant Number BF00E02723. As such, all field work and sampling procedures were conducted in accordance with the Quality Assurance Project Plan (QAPP), dated September 26, 2019, that was previously submitted to and approved by EPA Region 5. As required under the QAPP, a Sampling and Analysis Plan (SAP) document containing the same elements of the RI Work Plan was prepared by Braun Intertec and dated May 11, 2020, the SAP was submitted to the EPA Region 5. The RI Work Plan Addendum #2 was approved by MDA Incident Response Staff on November 2, 2021.

The RI was primarily performed between June and August 2020, with additional investigation performed in November 2021 and July 2022.

The results of the RI were included in the 2022 RI Report dated March 1, 2022, which included a summary of the data presented in the 2019 Phase II ESA. The updated tables and figures from the RI are included in this RAP, the table and figures were updated to reflect the April 2022 revised Soil Reference Values published by the MPCA.

In addition, per the March 2022 RAP, there were portions of the Site where some of the planned RI soil sampling locations were inaccessible due to flooding. In July of 2022, the flooding had receded to the point where most of these samples could be collected. July 2022 soil sampling is included with the RI results described below.

The RI consisted of soil borings, hand auger, test pits, sediment samples, groundwater samples, and surface water samples. The RI investigation included the following:

- Ten test pits (TT-1 through TT-10) excavated in areas of potential buried debris.
- Thirteen soil borings completed in agricultural maintenance and washout areas.
- Four soil borings in former petroleum tank areas.
- One soil boring in the north parking lot.
- Conversion of three of the soil borings into permanent monitoring wells.
- Twenty-one hand augers around the clubhouse.
- Over 200 shallow hand auger borings throughout the golf course areas (i.e., fairways, green, tee boxes and roughs).
- Over 50 multipoint composite samples (comprised of 574 individual aliquots) throughout the fairways.
- Approximately 100 hand auger borings in potential wetlands or pond sediments.
- Groundwater samples collected from the three monitoring wells, the existing irrigation well, and maintenance area wells at the facility.

Soil samples were submitted to Pace Analytical Services LLC (Pace) of Minneapolis and analyzed for a combination of the following parameters:

Analyte	Analytical Method	
VOCs	EPA 8260	
TKN	EPA 351.2	
PAHs	EPA 8270C	
Nitrate-Nitrite	EPA 353.2	
Chlorothalonil	EPA 8270	
GRO	WI MOD GRO	
DRO	WI MOD DRO	
Chlorothalonil	EPA 8270	
Propiconazole	EPA 8321	
Iprodione	EPA 8270	
MDA list 2	EPA 8321	
RCRA Metals/mercury	EPA 6020/7471	

The following provides a summary of the conclusions of the 2022 RI:

- Investigations at the Site have detected both non-petroleum and petroleum compounds in soil at various locations and depths across the Site. The non-petroleum impacts included widespread mercury contamination from the historical use of specialty fungicides and other turf management agricultural products associated with golf courses dating back to the 1930's and into the 1990's.
- The highest concentrations of mercury were detected in soil samples collected from the former greens and related fringe/apron areas. Mercury concentrations were detected consistently on greens, tee boxes, fairways, and in soil near the "mixing area" where fungicides are known to have been mixed with water and loaded into the turf management equipment for use on the golf course.
- The mercury concentrations in the fairways varied with many soil sample results exceeding the residential and commercial/industrial SRVs.
- Mercury concentrations exceeding the SRV were detected in all of the greens, and the majority of tee boxes.
- Mercury concentrations in the fairways typically range from 0.3 to 20.2 mg/kg.
 Approximately half of the fairways had detections of mercury at concentrations greater than residential SRVs.
- Mercury concentrations in the golf course roughs were typically well below the residential SRV and generally in the range of naturally occurring mercury concentrations. There were some exceedances of the mercury SRV in localized areas near cart paths or operation areas.
- Petroleum impacts detected at the Site are primarily associated with the past use and storage of diesel fuel and gasoline products in the former maintenance shop area located on the east side of the Site adjacent to McKnight Road. Specifically, there were three separate petroleum leak site numbers opened by the MPCA for the releases reported in the vicinity of the former maintenance shop area at the property. The MPCA closed these leak site numbers following review of the previously completed petroleum release investigations and/or soil corrective action.

- Non-petroleum impacts to soil from PAHs and arsenic have also been detected at a few locations at the Site.
- Test pits encountered buried debris at the Site. The buried debris includes the area of the former pool house and tennis courts, which contained various fill soils intermixed with debris. The observed debris included paint cans, concrete, asphalt, plastic, pieces of tennis court and other solid garbage materials. The debris was present intermittently down to a depth of approximately 5 ft below ground surface (bgs). Trace debris (wood or concrete) was encountered in soils near the maintenance buildings to depths of 7 ft bgs. DRO was detected in the soil associated with the buried debris at concentrations exceeding the MPCA unregulated fill criteria. VOCs were detected in soil vapor samples collected from the buried debris area.
- Several soil berms containing contaminated soils intermixed with debris are present in the wooded area south of the maintenance shop on the east side of the property and adjacent to McKnight Road. Debris types observed in the soil include brick, asphalt, concrete, carpet, drain tile, conduit, plastic, etc. A composite soil sample consisting of several discrete soil samples collected from different areas of the soil berms with observed debris detected mercury at concentrations exceeding the Residential and/or Commercial/Industrial SRV and PAHs detected concentrations below SRVs.
- Groundwater samples collected by Braun Intertec did not detect evidence of significant or widespread contamination by petroleum compounds or hazardous substances. Dissolved barium was the only metal detected in the water samples; however, the detected concentrations were well below the drinking water standard for barium.
- DRO was detected at 540 micrograms per liter (ug/l) in shallow groundwater at boring location ST-8, in the former washout/tank area of the Site. DRO was not detected above the laboratory reporting limits in the other groundwater samples analyzed during the investigations.
- The presence of residual petroleum-related shallow groundwater contamination associated with the closed leak sites in the maintenance area, that was previously investigated, is a known condition, and would only be a concern for redevelopment if dewatering for construction was required and/or if a stormwater infiltration feature was planned for this specific area of the Site.

- Mercury (total or dissolved) was not detected above laboratory reporting limits in the surface water or groundwater samples analyzed during the Site investigation.
- Low concentrations of VOCs were detected in soil vapor samples collected during this investigation. However, none of the detected concentrations of VOCs in soil vapor were above the MPCA's action level of 33X the residential intrusion screening values (ISVs) in any of the sample locations.

Figure 4 shows the sampling locations for all of discreet samples collected at the Site; Figure 5 summarizes the soil analytical data collected at the Site by Braun Intertec during the Site investigation. Summary data tables for all data collected to date are included in the attached Tables 1-14.

B.3.e. Additional Soil Sampling and Analysis - Wetland South of Maintenance Area

Due to the presence of standing water, several of the planned soil samples in the potential wetland south of the maintenance area (see the RI Addendum #2) could not be collected prior to 2022. Braun Intertec collected the following soil samples on July 13, 2022: SED-6, SED-6 E, SED-6 S, SED-6 W, PW-6C, PW-6C N, PW-6C W, PW-6D, PW-6D W, and PW-6D W. The soil samples were collected and analyzed per RI Addendum #2. The results of this additional investigation are included in Table 14 and shown on Figure 5, lab data from the additional sampling is included in Appendix B the MDA data review checklist is included in Appendix B as well. The Additional mercury impacts above the established SRVs or screening SLV are addressed as discussed in Section G.1.f below.

B.4. Published Geologic Information

B.4.a. Topography

According to the United States Geological Survey (USGS) 7.5-minute topographic map series, St. Paul East, Minnesota quadrangle, the Site elevation ranges from approximately 1,000 feet to approximately 1,060 feet above mean sea level and the terrain is rolling (2019 Phase I ESA).

B.4.b. Geology

The unconsolidated sediments in the Site vicinity are Pleistocene age till deposits that consist of sandy loam, clay loam, and silty clay loam. The till deposit is generally reddish brown in color and is locally compact (2019 Phase I ESA).

The depth to bedrock in the Site vicinity is 100 to 150 feet below land surface (2019 Phase I ESA). The uppermost bedrock units in the Site vicinity include the Middle Ordovician, Decorah Shale on the western

portions of the Site, the Platteville and Glenwood Formations on most of the central and northern portions of the Site, and the St. Peter Sandstone on the southern portions of the Site (2019 Phase I ESA).

Site-specific information regarding soils identified by the Site investigations is provided in the Site Conceptual Model provided in Section C.

B.4.c. Hydrogeology

The reported depth to groundwater in the Site vicinity is 100 to 200 feet below land surface. Shallow groundwater may occur at shallower depths above clay layers. The depth to first groundwater at the Site as measured in the three permanent monitoring wells installed as part of the RI ranged from 4 ft bgs to 29.9 ft bgs, corresponding to an elevation of 996 to 1014 ft msl. A table of the well details including measured water depths in included in Appendix C. According to published geologic information, the regional groundwater flow direction in the Site vicinity is generally westerly (2019 Phase I ESA). However, the local direction of groundwater flow may be affected by nearby streams, lakes, wells, and/or wetlands and may vary seasonally.

Site-specific information regarding groundwater conditions identified by the Site investigations is provided in the Site Conceptual Model provided in Section C.

B.5. Exposure Risk

The impacted soils identified at the Site are readily accessible below the grass and thin topsoil layer at each green and fringe as well as in many of the tee boxes, fairways, the maintenance area, in localized areas of the clubhouse area soils, the buried debris areas, some of the wetland sediments and in small areas of some rough's areas. Currently, the former golf course is open green space and there are no dedicated uses for the area. The area is not open to public use and the Site is surrounded by a security fence. Shallow petroleum impacts were previously identified associated with the closed leak sites in the maintenance area.

The response actions presented in Section G below will address the removal of impacted soils. The cleanup goals for the RAP are presented in Section F below.

The investigations to date have not identified groundwater or surface water impacts at the Site above the relevant drinking water standards, except for the residual petroleum impacts to perched water associated with the closed leak sites. Site investigations have not detected concentrations of VOCs in soil vapor above the MPCA's action level of 33X the residential intrusion screening values (ISVs) in any of the sample locations at the Site.

C. Site Conceptual Model

The historic information summarized above, and the RI results presented in the 2022 RI Report were used to prepare a site conceptual model that envisions future redevelopment of the Site.

The Site Conceptual Model incorporates the current Site use and conditions, former Site uses and conditions, planned Site uses, physical setting, characterization of impacts to the Site from the contaminants of concern (COCs), and a discussion of potential receptors and exposure pathways.

C.1. Current Site Use and Conditions

The Site was developed and used as a golf course from the early 1920s until golf course operations ceased in 2017. The Site is currently occupied by the former golf course operations structures, including unmaintained greens, tee boxes, and fairways, a driving range, practice putting greens, and support buildings. A vacant clubhouse with associated paved parking lot, swimming pool, vacant pool building, vacant golf cart sheds, and vacant garages are in the northwest corner of the Site. There was an original clubhouse that was severely damaged by fire in 1962. The remains of the destroyed clubhouse were demolished and replaced with a new clubhouse that was subsequently demolished between 1994 and 2000 and replaced by the current existing vacant clubhouse in 2000. The former fairways extended south of the club house. A vacant maintenance area located in the southeastern portion of the Site includes a former maintenance shop building, former maintenance storage building, and former agricultural chemical storage and mixing buildings (agricultural chemical buildings). Earthen berms containing various fill soils with debris are located along the southeastern Site boundary next to and south of the former maintenance area. Two out of service (the pumps were removed in 2020) unsealed water wells are present at the Site, including three shallow monitoring wells installed during the 2020 RI and two deeper production wells, an out of service irrigation well located near the center of the site, and an out of service production well located in the maintenance area.

Golf operations included the storage and mixing of agricultural chemicals. The storage and mixing of chemicals was primarily performed in and around the agricultural chemical storage buildings and the fill/wash out area and wash pad (Figure 2). The facility was using the mix load pad for washing and filling of pesticide equipment. The load pad and associated area drain to a low-lying area immediately south of the maintenance area. The golf course facility used a variety of pesticides, which included fungicides (including a mercury-based fungicide), herbicides, insecticides, and algicides for various applications across the golf course. Based upon available usage records it appears that these were used in small quantities, primarily on the greens, but occasionally on approaches and tee boxes.

The facility also used granular and soluble fertilizers consisting of various brands and formulations of nitrogen, potassium, and phosphorus-based fertilizers. Available records indicate the fertilizers used at the largest quantities were granular fertilizers. According to Tom Schmidt, a former Hillcrest Golf Course Greens Keeper, these fertilizers were applied to greens, tee boxes, and fairways, with occasional applications to roughs and around the clubhouse area. Available usage records indicate that the soluble fertilizers were primarily used on the greens.

In addition, historically the Site had several petroleum underground storage tanks (USTs) and ASTs on the Site. Three gasoline USTs were previously located on the Site, including one 560-gallon tank and two 1,000-gallon tanks. Leaks were reported for two of the former gasoline USTs and one former unregistered diesel AST. The USTs were located south of the former maintenance building (Leak #6222) and south of the agricultural chemical storage building (Leak #5050), the unregistered diesel AST was located west of the Maintenance Storage Building (Leak #18327). The leak locations are shown on Figure 2. The MPCA assigned a closed status to UST Leak ID# 5050 on June 1, 1992; to UST Leak ID# 6222 on September 26, 1994; and to AST Leak ID# 18327 on June 15, 2011. Leak ID # 6222 and Leak ID # 18327 were reportedly closed with remaining soil and groundwater contamination.

The Site topography varies across the Site with rolling hills, berms, low areas, such that the Site elevation ranges from approximately 1,000 feet to approximately 1,060 feet above mean sea level and the terrain is rolling. The stormwater from the Site appears to infiltrate in the green space areas or runs off by sheet flow to the existing stormwater sewer system.

The Site is located in a fully developed residential/light commercial area that was originally developed for cultivated agricultural land, grazing land, and residential use. By the early 1980s, a small retail strip mall was developed on an adjoining property to the north and another small retail strip mall was developed on an adjoining property to the northeast by the early 1990s. The retail development on the adjoining property to the northeast includes a gasoline filling station, which has operated since approximately 1990. The areas to the east, south, and west of the Site are residential developments.

C.2. Stratigraphy

The Site stratigraphy consists of a surficial fill deposit underlain by native soil deposits. Specifically, soils at the Site consist of the following:

- Variable fill soils/fill soils with debris
- Organic soils/peat
- Alluvium, fluvial, and glacial tills

The Site is covered with topsoil or topsoil fill consisting of sandy clay/clayey sand, sandy silt or silt with various amounts of organics materials. The topsoil is underlain with various fill materials consisting of primarily clayey sands, sands, silty sands, clay or sands with silts to depths ranging from 1 to 10 feet bgs. The soils in the lower elevations in the eastern and northeastern portions of the Site initially consist of a combination of existing fill, organic swamp deposits, and soft alluvial soils that extend to depths of 4 to 9 feet below existing grades. Clayey sands or clayey sand with gravel were encountered below these surficial materials to depth of 25 feet bgs in the borings advanced at the Site.

C.2.a. Fill soils

C.2.a.1. Berms

There are two soil berms on the Site, one is located north of the agricultural chemical storage buildings, and a second larger berm located south of the maintenance area (Figure 2).

The northern berm consisted of sandy lean clay fill over native sandy lean clay. The southern berm consisted of intermixed poorly graded sand and silt, clayey sand, or sandy lean clay fill soils with varying amounts of debris. In portions of the southern berm, organic peat soils intermixed with debris was observed beneath the debris bearing clays and sandy clay fill soils The debris consisted of various materials including bricks, concrete, carpet, glass, golf balls, metal pipes, and areas that appeared to be ash and other burned trash. The debris was observed in depths ranging up to 10 feet bgs.

C.2.a.2. Buried Debris-Containing Fill

The area of the former pool house and tennis courts contained various fill soils intermixed with debris including paint cans, concrete, asphalt, plastic, pieces of tennis court, and other solid garbage materials. The debris was present intermittently down to a depth of approximately 5 feet bgs.

Trace debris (wood or concrete) was encountered in soils near the maintenance buildings to depth of 7 feet bgs. The buried debris areas are shown on Figures 6 and 7.

C.2.a.3. Other Fill

There are various other fill soils at the Site including topsoil or topsoil fill consisting of sandy clay/clayey sand, sandy silt or silt with various amounts of organic materials, were underlain with various fill materials consisting of primarily clayey sands, sands, silty sands, clay or sands with silts to depths ranging from 1 to 10 feet bgs.

C.2.b. Native Soil

Native soils at the Site include the following:

- organic swamp deposits
- soft alluvial soils consisting of clayey sands or clayey sand with gravel

C.2.c. Groundwater Conditions

Groundwater, suspected to be perched, was encountered in some of the borings advanced during the 2019 Phase II ESA at depths ranging from approximately 5 to 13 feet bgs. During the 2020 RI, perched groundwater was encountered intermittently at several borings at depths ranging from 7.5 to 15 feet bgs.

Perched groundwater was measured in the three permanent monitoring wells installed as part of this investigation at depths ranging from approximately 4 feet bgs at MW-2 (located near the agricultural chemical storage/maintenance buildings), to approximately 19 feet bgs at MW-1 in the northern parking lot, to approximately 22 feet bgs at monitoring well MW-3 located in the south end of the site.

Groundwater was measured at approximately 134 feet bgs in the facility well located next in the maintenance area (Maintenance Well), and at approximately 190 feet bgs in the well located near the Third Hole tee box (Irrigation Well).

Based upon the investigations performed by Braun Intertec, groundwater impacts have not been detected at the Site with the exception of trace detections of dissolved barium Site wide, estimated trace concentrations of List 2 pesticides in a duplicate water sample collected from a well located in the former maintenance area (detected in duplicate sample only, but not in the original sample), both of which were at concentrations below relevant drinking water standards, and elevated residual concentrations of DRO in one sample taken near the former UST basins (also in the former maintenance area).

C.2.c.1. Surface Water Conditions

Surface water is present in several ponds across the Site, and in a drainage, swale located southwest of the maintenance area. Based upon the data collected to date, the surface water at the Site does not appear to have been impacted by mercury from historic Site operations.

Contaminants of Concern

The COCs detected during the Site investigations are listed in this Section. Additional information regarding the COCs, including their locations on the Site and concentrations, are provided in Section D.

C.2.d. Petroleum Compounds

Petroleum contamination at the Site will be addressed under the MPCA PB Program. Specific petroleum compounds detected at the Site include (by media type):

Soil

- Diesel range organics
- Xylenes

Groundwater

Diesel range organics

Soil Vapor

- Benzene
- Ethylbenzene
- n-Heptane
- n-Hexane

C.2.e. Agricultural Chemicals

Contamination related to the storage, management, and use of agricultural chemicals at the Site will be addressed under the MDA AgVIC Program. Specific agricultural chemical-related compounds detected during the Site investigations include (by media type):

Soil

- Mercury (from past agricultural chemical use)
- Total Kjeldahl Nitrogen (TKN)
- Nitrate-Nitrogen

Groundwater

- 2,4-D
- 2,4-DB
- 2,4,5-T
- 2,4,5-TP (Silvex)
- Bentazon
- Dicamba
- MCPA
- Picloram
- Triclopyr

C.2.f. Non-Agricultural Chemicals

Contamination related to non-agricultural chemicals will be addressed under the MDA VIC Program. Specific non-agricultural chemical hazardous substances detected during the Site investigations include (by media type):

Soil

- Mercury (from non-agricultural chemical sources)
- Arsenic
- Lead
- Chromium
- Cadmium
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benz(a)anthracene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Benzo(a)pyrene
- Benzo(g,h,i)perylene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene

Groundwater

Barium, Dissolved

Soil Vapor

- Acetone
- 2-Butanone (Methyl ethyl ketone, MEK)
- Carbon disulfide

- Chloromethane
- Cyclohexane
- 1,3-Dichlorobenzene
- Dichlorodifluoromethane
- Ethanol
- Ethyl acetate
- Methylene chloride (Dichloromethane)
- 2-Propanol (Isopropyl alcohol)
- Propylene
- Tetrahydrofuran

D. Contaminant of Concern Locations and Characteristics

D.1. Golf Course Areas

Golf Course Areas include those locations at the Site where active past golf course operations occurred; it is assumed that some level of active maintenance and chemical use occurred in and around these areas. Operations in the Golf Course Areas include the chemical storage and mixing area, the wash out and maintenance area, and greens, tee boxes, fairways, sand traps and associated roughs.

The following sections describe the various golf course areas and the types of contamination present in each area. Summary information pertaining to the need for response actions are also provided for each area.

D.1.a. Agricultural Chemical Storage/Maintenance Area

There are four buildings with associated paved loading areas that comprise the agricultural chemical storage/maintenance area (Figure 2). These are the agricultural chemical storage building, the maintenance storage building, the agricultural chemical storage shed and the maintenance building. Shallow soils (0-0.5 feet bgs) in portions of the exterior paved loading area for the agricultural chemical storage building, and the exterior soils adjacent to the side loading door of the maintenance storage building (Figure 2) are intermittently impacted with mercury at concentrations that exceed the residential and commercial/industrial SRVs. Soil samples collected beneath the floors of the buildings in agricultural chemical storage/maintenance area and around the agricultural chemical storage shed and the maintenance building did not identify elevated concentrations of mercury above the established SRVs or screening soil leaching value (SLV).

Summary Information

- Response Actions Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs: Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
- Relevant SRVs: Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Program: MDA AgVIC Program.

D.1.b. Water Fill/Chemical Mixing Area

The former water fill/chemical mixing area is located west of the maintenance buildings and near the wash pad (Figure 2). Soils in the water fill/chemical mixing area are impacted with elevated concentrations of mercury above the established SRVs and/or screening SLV to depths ranging up to 4 feet bgs. Borings and hand augers completed around the water fill/chemical mixing area indicate that the deeper mercury impacts (>1 feet bgs) are limited to the area immediately around the water fill pipes.

Summary Information

- Response Actions Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs: Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
- Relevant SRVs: Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Program: MDA AgVIC Program.

D.1.c. Greens and Tee boxes

Most of the shallow soils (0-0.5 feet bgs) in the greens and associated fringe areas and the tee boxes are impacted with mercury at concentrations that exceed the established SRVs. While some of the mercury concentrations detected in soil samples collected from the deeper soils (1-1.5 feet bgs) exceeded SRVs, most of the deeper soils (>1 feet bgs) were not impacted above SRVs. In addition, soils in the 8th hole green are impacted with arsenic above SRVs in the surface samples (0-0.5 feet bgs) and the deeper samples 1-1.5 ft bgs.

- Response Action Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs:
 - Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
 - Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
 - Residential and Commercial/Industrial SRVs Arsenic in Soil = 9 mg/kg.

- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Programs:
 - MDA AgVIC Program Mercury in soil.
 - MPCA VIC Program Arsenic in soil.

D.1.d. Fairways

During the RI, the fairways were divided into several decision units (DU). These decision units (See Figure 8) were sampled as described in the RI Addendum #2 to characterize the fairways for mercury impacts in soil. Based upon the results of the DU sampling, shallow soils (<1 feet bgs) in the fairways contain varying concentrations of mercury. The concentrations of mercury in the fairways range from 0.32 to 20.2 mg/kg. Approximately half of the fairway area DUs described by RI Addendum #2 have mercury impacts in soil that exceed the established SRVs or screening SLV. The fairways with SRV or screening SLV exceedances are shown on Figure 9.

Summary Information

- Response Action Required: Yes (in approximately ½ of the fairway area decision units).
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs:
 - Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
 - Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Program: MDA AgVIC Program

D.1.e. Rough Areas

The soils in the golf course rough areas generally have concentrations of mercury below the established SRVs and screening SLV, with most concentrations within the range of typical background concentrations for mercury. There are a few localized areas of the roughs where the Site investigations have detected elevated concentrations of mercury in soil that exceed the established SRVs and screening SLV. These impacted rough areas are located near cart paths, immediately adjacent to fairways, or adjacent to sand traps near an impacted green. The areas of the rough that require remediation are shown on Figure 9.

- Response Action Required: Yes (isolated locations).
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs:
 - Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
 - Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.

Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.

■ Lead Program: MDA AgVIC Program

D.2. Golf Course Support Areas

The Golf Course Support Areas include the vacant clubhouse and the area in the vicinity of the former clubhouse, the pool house and the former clubhouse/tennis courts, and the golf cart and storage sheds located near the clubhouse.

The following sections describe the various Golf Course Support Areas and types of contamination present in each area. Summary information pertaining to the need for response actions are also provided for each area.

D.2.a. Clubhouse Area

Most of the soils in the Clubhouse Area are not impacted above cleanup standards. There are, however, isolated areas of shallow soils in the Clubhouse Area that are intermittently impacted with mercury above SRVs. The mercury impacts around the clubhouse were primarily in the 0-0.5 feet bgs depths, with the deeper 1-1.5 feet bgs typically having mercury concentrations below the established SRVs. As discussed in the 2022 RI, both agricultural chemical and non-agricultural chemical sources of mercury in soil are believed to be present in the Clubhouse Area.

Shallow soils (0-0.5 feet bgs) near the small storage shed northwest of the clubhouse (DSS-2, DSS-2W) are impacted with polycyclic aromatic hydrocarbons (PAHs) above residential SRVs. The PAH soil contamination in this area appears to be limited to the surface soils based upon data collected during the Site investigations. The area of impacts above SRVs in the Clubhouse Area are shown on Figure 5.

- Response Action Required: Yes.
- COCs Triggering Response Action: Mercury and PAHs in Soil.
- Relevant SRVs:
 - Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
 - Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
 - Residential/Recreational SRV for PAHs in Soil = 2 mg/kg.
 - Commercial/Industrial SRV for PAHs in Soil = 23 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg, and for PAHs = 1.4 mg/kg.
- Lead Programs:
 - MDA AgVIC Program Mercury in soil from agricultural chemicals.

■ MPCA VIC Program – PAHs in soil, Mercury in soil from non-agricultural chemical sources.

D.2.b. Former Pool house and Tennis Courts (Buried Debris Area)

The former pool house and tennis courts originally occupying the golf course were demolished between 1985 and 1991 and replaced with the current pool. Test trenches excavated in this area identified a Buried Debris Area, including buried concrete pads, intermixed with contaminated soils. Constituents of concern were identified in the Buried Debris Area above detection limits. However, no constituent of concern was detected in the Buried Debris Area above applicable SRVs and SLVs. DRO, however, was detected in TT-1 at concentrations above the MPCA unregulated fill criteria of 100 mg/kg. The presence of buried debris and concentrations of DRO require management of the soils and buried debris in this area per MPCA requirements for regulated fill soils.

Summary Information

- Response Action Required: Yes.
- COCs Triggering Response Action: DRO in soil.
- Relevant Standard:
 - Unregulated fill Criterion for DRO in soil = 100 mg/kg.
- Lead Programs:
 - MPCA VIC & PB Programs

D.3. Existing Wetlands

There are several low areas of the Site where intermittent standing water or surface saturate conditions exist but are not considered ponds or water features associated with the former golf course areas. These low areas are referred to as wetlands for the purpose of the Site investigations and response actions.

Shallow soils (0-0.5 feet bgs) in the wetlands are intermittently impacted with mercury at concentrations that exceed SLVs and/or SRVs. The impacts appear to be limited to surface soils (<1 feet bgs), with the exception of one small area where the impacts extended to approximately 2 ft bgs, primarily in the wetlands located downgradient of the maintenance area in the southeast portion of the Site, and in some isolated areas outside of the maintenance area. The locations of the wetlands that require remediation are shown on Figure 10.

- Response Actions Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs:

- Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
- Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Program: MDA AgVIC Program.

D.4. Ponds

Several ponds associated with the former golf course are located on the Site. Shallow sediments (0-0.5 feet bgs) in the ponds are not impacted above established SRVs or screening SLVs, except for the small pond located adjacent to the 4th fairway, shown on Figure 5 sheet 9, which is impacted with mercury.

Summary Information

- Response Actions Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs: Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Program: MDA AgVIC Program.

D.5. Southern Berm

A fill soil berm area located south of the agricultural chemical storage/maintenance area is impacted DRO, PAHs, and mercury contaminants. Mercury concentrations identified in the fill soils exceeded the SRVs. This Southern Berm Area also includes varying amounts of debris intermixed with the fill soils.

- Response Actions Required: Yes.
- COCs Triggering Response Action: Mercury in Soil.
- Relevant SRVs:
 - Residential/Recreational SRVs for Mercury in Soil = 2.7 mg/kg.
 - Commercial/Industrial SRVs for Mercury in Soil = 3.1 mg/kg.
- Relevant Screening SLV: Screening SLV for Mercury in Soil = 3.3 mg/kg.
- Lead Programs:
 - MDA AgVIC Program Mercury in soil.
 - MPCA VIC Program Intermixed debris with other measurable soil contamination.

D.6. Soil Vapor

Soil vapor samples collected at the Site to date have not identified soil vapor at concentrations greater than the 33 times (33X) residential and/or commercial/industrial intrusive screening values (ISVs). In addition, VOC contaminated media (i.e., sources of soil vapor) have not been identified at the Site. Water and soil samples collected by Braun Intertec at the Site have not identified VOCs, except for a trace detection of xylene in one soil sample. Therefore, based upon the soil vapor, water, and soil data collected to date, there does not appear to be a soil vapor area of concern at the Site. No response actions related to soil vapors are required to support redevelopment.

D.7. Groundwater/Surface Water

Constituents of concern have not been identified in groundwater or surface water samples collected at the Site at concentrations above relevant drinking water or surface water standards, with the exception of one elevated DRO detection in a groundwater sample collected in the former washout/UST area. The detection of elevated DRO in groundwater is shown on Figure 6B of the 2019 Phase II ESA, and is included as Appendix D.

Summary Information

Response Actions Required: Yes, as necessary to manage groundwater and surface water during RAP implementation and redevelopment. The lead regulatory programs for groundwater and surface water management will be both the MDA and MPCA since measurable concentrations of both agricultural and non-agricultural contamination have been detected in soil and groundwater at the Site during the previous and recent site investigations completed in support of this RAP and summarized in the 2022 RI Report.

E. Potential Receptors and Exposure Pathways

There is the potential for human health impacts from exposure to COC-impacted soil; such exposure may be via ingestion, inhalation, or dermal contact. Based on Site characterization data, direct exposure to soils impacted by COCs is the predominant exposure pathway at the Site.

E.1. Contaminant Impact Survey.

Braun Intertec completed a Contamination Impacts Survey in general accordance with Attachment 2: Contamination Impacts Survey of MDA Guidance Document 9 - Remedial Investigation Work Plan Dated March 2022.

E.1.a. Human Exposure to Contaminated Soil

There are approximately 600 to 700 residential units within 1,000 feet of the Site. Assuming an average of 2.48 people per household based on US census data for the state of Minnesota (https://www.census.gov/quickfacts/MN), there are 1,488 – 1,736 residents within 100 feet if the Site.

Within the 1,000-foot boundary of the Site exists Playschool Child Care Inc (daycare center) at 1709 McKnight Rd N, Hayden Heights Playground (park area) at 1965 Hoyt Ave E, and Mounds Park Academy (school) at 2051 Larpenteur Ave E. Mounds Park Academy has an estimated student population of 520.

The Site is vacant and completely enclosed with locked security fence preventing access to the Site. Furthermore, the existing wells are secured with locking well covers. The Site is patrolled by security twice daily.

E.1.b. Groundwater

Per Saint Paul Regional Water Services and Minnesota Department of Health Well Division, there are no municipal wells within a one-mile radius of the Site.

According to the Minnesota County Well Index, there are more than 25 well logs listed within a one-mile radius of the Site. There are 37 well logs listed in Table 1 of Appendix E A. All identified wells are located east of Ruth St N, west of Sterling St N, south of Ripley Ave, and north of Maryland Ave E.

All available data for identified wells is summarized the Table A included in Appendix E. The Figure included in Appendix E shows locations of all wells listed on the Table 1 in Appendix E.

Reportedly, there are no known unregistered or abandoned wells according to the Minnesota Department of Health Well Division or The Ramsey-Washington Metro Watershed District within one mile of the Site.

The Site owner and owners of all properties that adjoin the Site were contacted to determine whether existing or abandoned wells are located on their properties. Owners were contacted via a mailer sent to all addresses. The results of the property owner well surveys are presented in Table 2 included in Appendix E.

Per Nicole Soderholm of The Ramsey-Washington Metro Watershed District there are no current or planned projects for groundwater development up to one-mile down-gradient of Site.

E.1.c. Surface Water

There are three small stormwater ponds within 200 feet of the Site across McKnight Rd N. The two ponds furthest north are not directly connected to Site surface water or groundwater. The southernmost surface water pond is connected to the Site via an inlet that connects to a culvert that runs under McKnight Rd N. Braun Intertec has previously sampled the surface water bodies on the Site for mercury; all of the analytical results of samples collected from the onsite water bodies were non-detect for mercury. The results of the previous surface water sampling were presented in the 2022 RI Report.

E.1.d. Other Potential Receptors

There is the potential for human health impacts from exposure to COC-impacted soil; such exposure may be via ingestion, inhalation, or dermal contact. Based on Site characterization data, direct exposure to soils impacted by COCs is the predominant exposure pathway at the Site. Issues associated with direct exposure are addressed in the proposed response actions described in this document including the Dust Control Plan within the Dust Control Specification.

E.2. Direct Soil Exposure Pathway

The potential receptors via direct soil exposure include current and future users of the Site and construction and utility workers (short term exposure). If impacted fill soils were removed from the Site and used as fill soils off-site, the potential receptors via direct soil exposure would include the users of those off-site properties, and construction workers, utility workers, and potentially the general public.

E.3. Leaching Pathway

Based on contaminant concentrations, there is a potential for the soil leaching to groundwater and/or surface water pathway to be completed from the elevated concentration of metals and PAHs in the soils at the Site. However, based upon the age of the releases at the Site and the recently completed groundwater and surface water investigation data collected by Braun Intertec, there are no indications that metals or PAHs in soils are leaching into surface water or and groundwater at the Site.

E.4. Water Ingestion Pathway

There is a potential risk of direct exposure to or ingestion of shallow perched contaminated groundwater in the maintenance area at the Site. However, groundwater at the Site is currently not used. There are

two out of service groundwater wells and three shallow monitoring wells currently located at the Site. The Site is vacant with a security fence preventing access to the Site and the wells are secured with locking well covers. Perched groundwater is present at depths greater than 4 feet bgs across the Site, further limiting the risk of direct contact with the perched groundwater.

F. Cleanup Standards and Definitions

The Site is currently vacant property. The planned redevelopment of the Site includes mixed use light industrial, commercial, recreational, passive greenspace, and residential uses. The planned residential uses will include low-, medium- and high-density housing. Response actions to be completed and the applicable cleanup standards for any given location at the Site will be determined by the planned future use that will occur at those locations.

Cleanup standards applicable to the Site and established in this RAP address the following potential exposure pathways: 1) direct human exposure to impacted soil, and 2) leaching from impacted soil that would result in impact to underlying groundwater.

The direct exposure pathway is addressed by the MPCA's Residential/Recreational and/or Commercial/ Industrial SRVs. The Residentials/Recreational SRV will apply in the portions of the Site planned for future residential, recreational, wetlands, and passive greenspace use (see Figure 11). The Commercial/Industrial SRVs will apply in the portions of the Site planned for future commercial or industrial use and within the public road rights-of-way planned for the development. Meeting Site cleanup standards established in this RAP will protect construction and maintenance workers under a short-term worker scenario for residual impacted soil that may be encountered by construction workers during the redevelopment of the Site and further maintenance of utilities at the redeveloped Site. Additionally, construction and maintenance workers' exposure to soil will be managed with the implementation of a Site-specific health and safety plan.

Utility corridors will be constructed within unregulated fill soils at base of and surrounding the utility after response actions have been completed at the Site. Residual contaminated soils or sediment and debris and/or regulated fill soils encountered during utility corridor excavations will be managed in accordance with the RAP or CCP as applicable.

In addition, in the areas of petroleum impacts soils excavated for redevelopment with PID screening values at or greater than 200 parts per million (ppm), and/or with DRO concentrations exceeding 100 mg/kg, will be properly managed and disposed of at a permitted off-site treatment/disposal facility.

Based on the identified COCs and the detected concentrations of COCs in Site soils, the nuisance dust standard of 2 milligrams per cubic meter (mg/m³) will be enforced to provide protection for human health during construction activities related to response action implementation at the Site.

Leaching from contaminated soil to groundwater is addressed by applying the MPCA Screening SLVs to future greenspace areas, where surface water will be managed/infiltrated, such as wetlands, passive open space, park space and other stormwater management features. Planned wetlands and other stormwater management features are shown on the development plans included in Appendix A.

G. Proposed Response Actions

As described in Section E, direct human exposure to contaminated soils is the primary environmental risk impacting the planned redevelopment at the Site. The proposed response action activities presented herein will involve the excavation and management of impacted soils that were identified at the Site. The proposed response actions will address the identified soil contamination at the Site to protect human health and the environment at the Site and facilitate redevelopment. The response actions were selected based on Site conditions and appropriate cleanup standards for planned future land uses of the Site. A diagram depicting the future redevelopment and associated land uses is included as Figure 11. Note that the building layouts and identified infrastructure improvements may be modified before the development plan is finalized. The future use areas identified on Figure 11, however, are not anticipated to change and will guide responses actions and soil reuse requirements specific to end use of the Site as describe the following sections.

The planned response actions include the following:

- Removing and managing contaminated media during Site clearing and grubbing.
- Abandonment of the existing monitoring wells and abandoned groundwater wells at the Site.
- Building and existing structures demolition.
- Removal of subsurface utilities located within targeted soil remediation areas to provide access to impacted soils.
- Removal of subsurface irrigation infrastructure located within targeted soil remediation areas to provide access to impacted soils.
- Management of surface water and shallow groundwater at the Site to facilitate soil remediation.

- Excavation of mercury impacted soil/sediments exceeding established cleanup standards and disposal of the excavated material off-site.
- Management of residual mercury impacted soils with concentrations above naturally occurring background levels.
- Excavation of PAH and arsenic contaminated soil exceeding established cleanup standards and disposal of the excavated material off-site.
- Excavation and on- or off-Site management of regulated fill soils.
- Backfilling remedial excavations as needed with clean soil from on-Site and/or imported fill material from off-Site.
- Petroleum impacted soil excavation and disposal off-Site.
- Short term/temporary engineering controls (dust control, storm water control, Site access).

These actions are described in more detail in the following sections. Additional detail and specific requirements for implementing the work described below is provided in the Soil Management Plan included as Section H below.

G.1. Response Actions Related to Contaminated Media Excavation

The response actions related to the excavation of the identified areas of contaminated soil and sediment, including areas with mixed debris-containing materials will be monitored and documented by Braun Intertec engineers and scientists with experience with Brownfield redevelopment projects including soil, environmental, and geotechnical corrective actions.

Oversight of the earthwork and field screening for the COCs during earthwork activities will include realtime analysis for organic vapors, soil sampling and analysis for COCs excavation verification, tracking of contaminated soil stockpiles and volumes, surveying excavation boundaries and placement locations, and documenting the work in a RAP Implementation Report to support MDA and MPCA RAP implementation approvals and final environmental assurances.

A general discussion of the response actions needed to complete the required contaminated media excavations, based on previous environmental investigations and planned redevelopment, is presented below.

G.1.a. Site Clearing, Grubbing and Tree Removal/Replanting

Trees, stumps, surface vegetation, and related subsurface root systems will be cleared and grubbed as necessary to facilitate completion of response actions and redevelopment. In addition, select existing mature trees at the Site may be considered for intact removal and replanting at either an on-Site or off-Site location subject to consideration of the tree's location related to known existing contaminated soil and the potential for residual contaminated soil being attached to the removed root system.

The following summarizes the response actions and considerations that will apply to the Site clearing, grubbing and tree removal/replanting activities.

- Site clearing, grubbing, and tree removal activities that disturb Site soils will be observed and monitored by Braun Intertec staff. Site clearing and grubbing activities that occur and disturb soil within a known area of soil/sediment contamination will require management as a contaminated material under this RAP.
- At locations of known contaminated soil or sediment, the portions of the removed trees and vegetation with attached soil will be managed as contaminated material and will be disposed of off-Site at a permitted landfill (subject to landfill approval). If practical, the soil attached to the trees and vegetation from known areas of contamination will be manually removed as a response action under this RAP to allow removal and/or recycling of the vegetation as clean material without restriction. On-site staging or stockpiling of trees and/or vegetation with attached soil will be completed as needed, subject to the same daily covering requirements utilized for contaminated soils (see Section H.6).
- At locations with no known contaminated soil or sediment, the portions of the removed trees and vegetation with attached soil will be managed as clean material. This clean material will either be processed (e.g., chipped) and reused on-Site without restriction or hauled off-Site for reuse or recycling as unregulated material as appropriate. On-Site reuse locations will likely include future wetlands and greenspace areas subject to project need and material suitability. On-Site stockpiling and staging of the removed clean trees and related vegetation will be subject to erosion control project requirements.
- Above grade portions of trees and Site vegetation that can be removed without disturbing Site soils will be managed as clean material. The material will either be processed (e.g., chipped) and reused on-Site without restriction or hauled off-Site for reuse or recycling as unregulated material as appropriate. On-Site reuse locations will likely include future wetlands and greenspace areas subject to project need and material suitability. On-Site stockpiling and staging of the removed clean trees and related vegetation will be subject to erosion control project requirements.

Existing mature trees at the Site will only be considered for intact removal and replanting if the tree's original location is outside of an area of soil or sediment contamination addressed by response action under this RAP. Existing trees from other non-contaminated locations will be considered eligible for intact removal and replanting. If replanted on-Site, the trees removed intact from uncontaminated areas will be replanted on-Site without further sampling or testing of the attached soil for contamination. However, soils attached to trees removed intact for off-Site replanting will be sampled and tested for mercury to confirm that the remaining attached soils meet the MPCA criteria established for unregulated soils.

G.1.b. Abandonment of the Existing Wells

Currently there are three monitoring wells, an irrigation well, and a maintenance area production well at the Site.

The three monitoring wells were installed by Braun Intertec and include the following:

- MW-1 (Unique number 849084), total depth is 25 feet bgs
- MW-2 (Unique number 849085), total depth is 20 feet bgs
- MW-3 (Unique number 849086), total depth is 30 feet bgs

An irrigation well and associated pump house are located approximately 600 feet north-northwest of the maintenance area. The location of the irrigation well and pump house corresponds to the location described for Unique Well Number 603061. The well depth is reportedly 486 feet.

An unregistered well was observed by Braun Intertec near the southwest corner of the Site in the vicinity of the maintenance buildings that did not appear to have a Unique Well Number. Based on previous reports and our interview with a previous employee of the former golf course, the well was apparently used for various washing and maintenance activities. The depth of the well and other information concerning the well is unknown.

The presence of unsealed wells can act as a conduit for impacts to migrate into groundwater. Therefore, response actions will be implemented by utilizing a licensed well contractor to seal the five wells described in this section in accordance with Minnesota Department of Health (MDH) regulations.

These five wells will be properly abandoned per the MDH well code during RAP implementation activities. The location of the five wells is shown on Figure 12.

G.1.c. Demolition of Existing Buildings and On-Site Structures

Braun Intertec previously prepared and submitted to the MDA and MPCA, under separate cover, soil management plans for the planned demolition of the structures located in the Site's Maintenance Area and the Clubhouse Area. The specifics for soil management during building demolition in these areas can be found in the documents *Storm Sewer Rehabilitation & Building Demolition Soil Management Workplan Former Hillcrest Golf Course Site, Saint Paul, Minnesota*, dated July 26, 2021, and the *Building Demolition Soil Management Workplan, Former Hillcrest Golf Course Site – Clubhouse Area, Saint Paul, Minnesota* dated January 28, 2022 (2022 Clubhouse Demolition SMP).

The remaining buildings, including slabs and foundations, as wells as the water lines, sanitary/storm sewer lines and other buried utilities, will be demolished as part of the planned development work. The existing paved areas and concrete slab at the Site, where practical, will be reclaimed, crushed, and reused on Site as aggregate base materials for future roadways or parking areas (MNDOT Class 5). The reuse of reclaimed concrete and asphalt pavement is now a common practice and saves on the use of virgin aggregate. During demolition and removal activities, environmental observations and field screening for the presence of wastes from the historic floor drains, sumps, and piping and unanticipated impacted material will be performed.

Most of the hazardous materials have already been properly removed/abated from the existing structures. However, some asbestos containing materials (ACM) and/or other regulated building materials remain. These materials will be properly abated and removed prior to demolition. The foundations and utilities for these structures may contain waterproofing. Waterproofing can contain asbestos, therefore as these structures are unearthed during demolition the waterproofing will be sampled to evaluate whether the waterproofing contains asbestos.

The contract for demolition will include specifications to ensure that City and State permit conditions and rules are followed, including Site access control, utility abandonment, storm water control and fugitive dust monitoring and control.

There is some miscellaneous solid waste scattered around the Site. These items will be recycled or handled and disposed of in accordance with appropriate regulations. Any remaining solid waste debris such as miscellaneous debris and wood will be segregated and disposed of off-Site at appropriate permitted facilities in accordance with local, State and Federal requirements.

After demolition of the clubhouse, the below ground level will be backfilled with either on Site clean soils from the designated Borrow Area (2022 Clubhouse Demolition SMP) or approved imported soils (see Section G.4.e for imported soil requirements). Braun Intertec collected composite samples through the proposed borrow area soils for laboratory analysis to characterize the soils. Based upon the results of the

Borrow Area investigation, the borrow soils meet the definition of unregulated fills per MPCA guidance and can be reuse on Site. A table summarizing the borrow soil analytical results is include as Table 12.

The above ground structures that will be demolished are shown on Figure 13.

G.1.d. Management of Surface Water and Shallow Groundwater at the Site to Facilitate Soil Remediation

Dewatering of surface water in existing ponds and potential wetlands and shallow groundwater will be required to complete soil response actions in areas of the Site where surface water and shallow groundwater intersect with contaminated soil and sediment areas. Surface water and shallow groundwater will need to be dewatered and properly managed to allow access to the underlying impacted soils/sediments.

Constituents of concern have not been detected in surface water samples or shallow groundwater samples collected during the Site investigations at concentrations above relevant drinking water or surface water standards, with the exception of an isolated shallow groundwater sample collected near the former UST adjacent to the maintenance area of the Site. Discharge and/or treatment of stormwater, or any other dewatering action required for demolition or soil remediation, will be conducted in accordance with State, Federal, and local regulations and rules. Water from within the ponds and potential wetlands, as well as stormwater catch basins/manholes and piping, may be pumped out using a vac truck or similar equipment. Dewatered surface water or shallow groundwater removed during response action implementation will be either pumped into existing drainage pond(s) on the Site, stored in a vac truck or portable tanks, used for on-Site for dust suppression during Site excavations, transported for disposal at an off-Site permitted facility, or discharged under proper permits to the existing sanitary sewer system. Best management practices, including filtration and/or sediment settling tanks will be used during the water pumping activities to minimize the potential for contaminated sediments and/or soils to become intermixed with the water being managed. A sanitary sewer discharge permit and Minnesota Department of Natural Resources (DNR) water appropriations permit will be obtained for the required dewatering and water pumping/management activities as required.

G.1.e. Excavation of Mercury Impacted Soil/Sediment and Disposal Off-Site

A Braun Intertec environmental technician will be on-Site during response action excavation activities associated with the removal of mercury contaminated soils known to exceed Site cleanup standards. Proposed excavation areas are shown on Figure 10. Excavation areas will be pre-staked using GPS coordinates. The initial excavation depths identified on Figure 10, range from 1 to 5 feet bgs. The initial excavation depths are based upon the vertically stratified sampling data collected to date at the Site. Excavation boundaries (sidewalls and base) will meet either the Residential/Recreational SRV for mercury of 2.7 mg/kg or the Commercial/Industrial SRV for mercury of 3.1 mg/kg depending on the use for the

specific area. If confirmation sampling (see Section G.4.b below) indicates that residual mercury remains in a base or sidewall sample at concentrations above the Residential/Recreational or Commercial/Industrial SRVs, as appropriate, that area will be further excavated.

Excavated mercury-impacted soils exceeding established Site cleanup standards will likely be direct-loaded into trucks and transported to a permitted industrial landfill in Minnesota. However, if the direct loading cannot be used, these soils will be stockpiled on-Site until transportation and disposal arrangements can be made. Stockpiled soils will be placed on polyethylene sheeting or other impervious surface and covered with polyethylene sheeting at the end of each workday, which will be secured in place. The stockpile will be bermed to prevent storm water run-on and/or runoff.

During excavation of shallow impacted soils through the golf course, irrigation piping may be encountered. Shallow irrigation piping in areas requiring remedial excavation will be removed to provide access to impacted soils and handled in the following manner:

- The piping will be segregated from piping removed from non-impacted areas.
- The soil adhered to the piping that was removed from within remedial excavation areas will be disposed of off-Site at a permitted landfill.

G.1.f. Management of Mercury-Impacted Soils Above Background Concentrations, but Meeting Site Cleanup Standards

Based upon the sampling results to date, portions of the fairways, tee boxes, and wetland/ ponds are impacted with mercury above the Residential/Recreational and/or Commercial/Industrial SRVs. There are several tee boxes, large portions of the fairways and most of the potential wetlands/ponds that contain residual mercury impacts below the residential SRVs. The concentration of mercury in soil from these areas is mostly above typical background concentrations for mercury in soils, with some concentrations near cleanup standards.

Meeting the final grades at the Hillcrest Redevelopment Site will require a net soil export to balance the Site. If a suitable on or off-Site use of the referenced soil exceeding background mercury concentrations cannot be found, the material will either be sent off-Site for disposal at a permitted landfill or if the soils meet the MPCA requirements of unregulated fill, may be exported off-site (excluding type 2 soils which must remain onsite or be disposed offsite at an appropriate landfill). It will be more cost effective to manage the soil exceeding background mercury concentrations on-Site and export clean native soil to balance soils during redevelopment. Therefore, if suitable on-site locations are identified, the soil exceeding background mercury concentrations and meeting commercial/industrial SRVs will only be managed on-Site as a response action within public roadway rights-of-way and on property identified as commercial/industrial use as outlined in Section H of this RAP.

If soil meeting the definition of unregulated fill is reused off-site, it is noted that the MPCA's Best Management Practices for the Off-Site Reuse of Unregulated Fill Guidance Document recommends the following Best Management Practices for the placement of unregulated fill in sensitive settings:

- Avoid placing unregulated fill at schools, playgrounds, daycares, and residential properties.
 Unregulated fill is most suitable for use at industrial or commercial properties.
- Avoid placing unregulated fill in gardens where food for human/animal ingestion will be grown.
- Observe a minimum ten-foot separation distance between unregulated fill and the water table.
- Avoid placing unregulated fill where contaminants may be transported by run-off to lakes, rivers, wetlands, or streams.

Exported native soils from the site will follow the above requirements.

G.1.g. Excavation of PAH Contaminated Soil and Soil with Intermixed Debris

There are isolated areas of soils at the Site that are impacted with PAHs at concentrations above Residential/Commercial SRVs (e.g., clubhouse area and buried debris in the southern berm). There are also isolated areas at the Site with debris fill soils, which are impacted with Constitutes of Concern. These contaminated soils and debris fill soils will be excavated to the depth required by the planned development and to meet established Site cleanup standards. These excavated soils will be field screened with a photoionization detector (PID) equipped with 10.6 eV lamp. Geotechnical suitable soils with no impacts above Residential/Commercial SRVs or screening SLVs, and up to 10% debris may be reused as engineered fill beneath paved areas. Unregulated fill soils with no more than de minimis debris may be re-used beneath the future buildings. Contaminated soils and contaminated soils with mixed debris will be disposed of off-Site at a permitted landfill.

G.1.h. Petroleum Impacted Soil Excavation and Disposal Off-Site.

There is an area of shallow petroleum impacts associated with closed leak sites #5050 and #18327 located in the maintenance area of the Site.

The petroleum impacted soils will be managed in accordance with MPCA guidance as prescribed below.

In the areas where only petroleum contaminated soils are encountered the following applies:

- Petroleum-saturated or grossly contaminated soils shall be excavated and properly managed at an MPCA approved off-Site treatment/disposal facility.
- Soils excavated for redevelopment with PID screening values at or greater than 200 parts per million (ppm), and/or with DRO concentrations exceeding 100 mg/kg, will be properly

managed and disposed of at a permitted off-site treatment/disposal facility. If soils are transported off-site for disposal, the soils will be characterized and taken to a disposal facility permitted to accept those waste.

- Petroleum-contaminated soils less than 200 PPM (PID) may be thin spread on-site under paved surfaces within the areas zoned for commercial/industrial use.
- For utility corridors, soils with PID screening values at or greater than 10 ppm encountered during the installation of underground utilities will be removed and property managed as part of the RAP. If contamination remains at or above 10 ppm a vapor barrier will be placed around the installed utility corridor.

G.2. Short Term Monitoring/Temporary Engineering Controls

During the implementation of response actions, monitoring and controls will be in place for stormwater and dust generated from the soil response actions, mass grading, soil correction, demolition and related work.

G.2.a. Dust Control and Air Monitoring

Perimeter air monitoring will be performed during response action soil excavation and excavated soil handling and placement to document that the dust control activities are successful at keeping nuisance dust to levels below the nuisance dust standard. Dust monitoring will be accomplished with hand-held dust monitoring meters.

The dust monitoring will be defined in a Nuisance Dust Monitoring Plan/Specification that will require sampling and analysis and reporting daily while abatement, demolition, and soil earthwork is being performed.

G.2.b. Storm Water Pollution Prevention and Sediment Control Plan

An interim and phased Storm Water Management Plan will be developed to control erosion and sediment on-Site. This work will be detailed and approved in a Construction Site Storm Water Pollution Prevention Plan (SWPPP).

G.2.c. Site Access

Site security will include the existing security fences and signage to prevent unauthorized access during the work and in non-working hours.

G.3. Permits

A number of permits will be required by governmental agencies. A list of those permits potentially required is as follows.

- SWPPP/Erosion Control Plan: This plan is required by the MPCA, as well as the City of St Paul and the Ramsey-Washington Metro Watershed District. The plan will be prepared by the general contractor for the response action work. This contractor will also implement the plan during subsequent building and utility work. The plan and its implementation will ensure that storm water from the Site construction work, both during the RAP implementation and during subsequent Site building and utility construction, will not be unreasonably impacted and discharged off-Site. This will be accomplished through BMPs prescribed by the City of St Paul and the Watershed District.
- Land Alteration/Grading Permit: For the Site excavation, stockpiling and soil placement and compaction and final grading a grading permit may be required by the City of St. Paul and will be applied for by the general contractor for the response actions.

G.4. Methods and Procedures

G.4.a. Soil Screening

A Braun Intertec environmental technician with asbestos inspector credentials will be on Site during excavation activities when impacted soils are excavated at the Site. Soils will be observed for the presence of visual and olfactory indications of contamination. Direct olfactory evaluation of contaminated soil is not recommended for safety reasons, but incidental observations will be noted and acted on. The technician will follow MPCA-approved headspace methodology using a PID equipped with a 10.6-electron-volt lamp to monitor soil for the presence of organic vapors. A minimum of one sample for headspace analysis will be collected for every 10 cubic yards of potentially impacted soil removed. Screening results will be documented.

The headspace procedure is used to field-screen organic vapor levels in soils. The procedure consists of half-filling a new quart-sized sealable bag with a soil sample. The bag is quickly closed and headspace development is allowed to proceed for at least 10 minutes. The bag is shaken vigorously for 15 seconds, both at the beginning and the end of headspace development. After headspace development, the PID probe is inserted into the bag to one-half the headspace depth. The highest reading observed on the PID is then recorded.

In the area of the known petroleum impacts, as excavation proceeds, the field technician will collect and field screen soil samples frequently, enough to verify the need for soil removal (at least one sample for each 10 cubic yards of soil removed). Removed samples will be labeled with the prefix "R", the sample ID, and the sample depth. The field technician will document successive PID readings vertically below the source of release, indicating the location and depth of each sample on a map of the excavation.

G.4.b. Confirmation Sampling

As part of RAP implementation, Braun Intertec will perform confirmation soil sampling to verify Site cleanup standards are met and assist with managing the exposure pathways.

This section outlines the plan for confirmation soil sample collection and analysis from soils excavated during implementation of the RAP.

Following excavation of each impacted area, confirmation samples will be collected from the base and sidewalls of the excavation. The following additional details are provided.

Greens/Fringes Excavations

For each green and associated fringe area, the excavation will be divided into quadrants and one base confirmation soil sample will be collected per quadrant. Each quadrant sample will be a composite sample comprised of four aliquots. See Figure 14 for an example of this approach.

For sidewall samples, one confirmation sample will be collected for every 45 lineal feet and the side wall composites form each quadrant will be used to create a composite sidewall sample for each quadrant. Sidewall samples will be collected from the 0- to 6-inch interval at the excavation boundary. The 0- to 6-inch interval is used to confirm clean boundary because the fungicide was applied topically, and this interval is most applicable to identify whether impacts remain. All samples collected form the greens and associated fringe areas will be analyzed for mercury using EPA method 7471. In addition, the confirmation samples for the 8th Hole Green will be sampled for total arsenic using EPA method 6020.

Tee boxes and Rough Hot Spots

Confirmation samples will be collected from the base of those tee boxes and the rough with mercury concentrations in soil Residential/Commercial SRVs (See Figure 10). Confirmation samples will be collected from these areas in the same manner as for the greens/fringes described above.

Wetlands and Ponds

Confirmation samples will be collected from the base of those Potential Wetlands and Ponds with mercury concentrations in soil Residential/Commercial SRVs (See Figure 10). Confirmation samples will be collected from these areas in the same manner as for the greens/fringes described above.

Fairways

Confirmation samples will be collected from the base of the decision units in the Fairways that had detected concentrations of mercury in soil exceeding the Residential/Commercial SRVs (See Figure 8). The confirmation base excavation samples from the Fairways with surficial mercury impacted above Residential/Commercial SRVs will be collect in the same manner as described in the RI Addendum #2, which is summarized below.

The fairways are sub-divided into various decision units.

- In each decision unit where the concentration of mercury in surface soils was above
 Residential/Commercial SRVs, one composite soil sample will be created from several aliquots collected from the 1-1.5-foot soil interval for mercury analysis.
- On aliquot will be collected for every 2,000 square feet.
- Composite samples will be created by combining all aliquots from a decision unit at a similar depth into one composite sample per the protocols in the 2020 RI Work plan/2020 SAP.
- If the results of the 1-1.5 ft confirmation samples are greater than the mercury SRV, then another 6 inches of soil will be removed for off-site disposal, and another composite sample will be collected from that decision unit from the 1.5 to 2 ft bgs depth for lab analysis of mercury. This process will continue deeper in the applicable decision units until the soil detections are less than the SRV for mercury.

The Fairway decision units and aliquot sample locations are shown on the attached Figure 9. All samples collected form the fairways will be analyzed for mercury using EPA method 7471.

Excavation of Soils with Intermixed Debris

Soils from these areas will be screened using a 10.6 eV PID at a rate of approximately one headspace measurement for every 100 cubic yards (CY) of soil.

Soil samples will be collected for laboratory analysis from excavation sidewalls and base. Soil samples will be collected from these fill soils at a rate of one five-point composite sample and one grab sample per 2,500 CY. Composite samples will be analyzed for PAHs, DRO and Resource Conservation and Recovery Act (RCRA) metals. Grab samples will be analyzed for VOCs and GRO.

Petroleum Excavation

Petroleum post excavation sampling will be in accordance with MPCA guidance document Excavation of petroleum-contaminated soil and tank removal sampling, C-prp3-01, dated March 2017.

The Braun Intertec technician will collect bottom samples from the bottom of the excavation basin at a rate shown in the chart below. Bottom samples will be labeled with the prefix "B", the sample ID, and the sample depth.

Sidewall samples will be collected at a rate shown in the chart below; with a minimum of four sidewall samples (i.e., one from each side). The collected side wall samples will be collected at a depth of the highest PID readings during excavation. Sidewall samples will be labeled with the prefix "S", the sample ID, and the sample depth.

Confirmation samples will be analyzed for PAHs, RCRA metals, DRO and GRO.

The number of soil samples from the excavation areas from petroleum impacted areas will be collected based on the following:

Base of Excavation		Sidewalls	
(ft²)	Number of Samples	(ft²)	Number of Samples
<500	1	<500	4
500-1000	2	500-1000	5
1000-1500	3	1000-1500	6
1500-2500	4	1500-2000	7
2500-4000	5	2000-3000	8
4000-6000	6	3000-4000	9
6000-8500	7	>4000	1 per 45 linear feet
8500-10890	8		

G.4.c. Areas with No Known Impacts or Debris Present

Protocols for characterizing fill and underlying native soil in these areas where no known impacts or debris is present are described below.

Soils excavated from these areas will be visually monitored by for obvious signs of potential impacts (visual, olfactory). Soils with no organic vapors detected will be re-used onsite as unrestricted fill. If soils are planned to be re-used off-site, then these soils will be sampled either from stockpiles on-site or through soil samples of the in-place soils including previously collected samples and characterized for potential off-Site reuse. Soil samples of soils for potential off-site re-use will be collected from these soils at a rate of one five-point composite sample and one grab sample per 5,000 CY. Composite samples will be analyzed for PAHs, eight RCRA metals, and DRO. Grab samples will be analyzed for VOCs and GRO. Soils reused off-Site will meet the MPCA's unregulated fill criteria.

Soils with organic vapors detected above background concentrations will be characterized for on-Site reuse or off-Site disposal. For other areas with elevated PID readings, soil samples will be collected from these stockpiles at a rate of one grab sample per 2,500 cubic yards (CY). Samples will be analyzed for VOCs, PAHs, RCRA metals, DRO, and GRO. Excess fill targeted for off-site reuse shall be from a native source and/or meet the MPCA's criteria for unregulated fill.

G.4.d. Sample Labeling and Handling

Sample bottle labels appropriate for the size and type of containers will be provided by the MDH certified laboratory analyzing the samples. All sample containers will be labeled prior to being filled. Each label will indicate at a minimum:

- Sample identification
- Date/time of sample collection
- Sampler's initials
- Required analyses
- Type of preservative

All labels will be completed in waterproof ink. Each sample collected will be given a unique sample identification code.

The field sampler will be responsible for the care and custody of the samples until they are transferred or properly dispatched to the laboratory. The samples will be shipped via courier or hand delivered to the laboratory. During transfer of custody, a properly completed chain-of-custody form will accompany samples.

G.4.e. Soil Import

Fill sources will be considered on a case-by-case basis and evaluated for the potential presence of contaminants in the material. If the fill source is from a site with no environmental concerns, such as native pit run material or from a residential development with no USTs or other environmental concerns, no analytical testing of the material will be conducted.

Acceptance of fill from other sources with potential environmental concerns will be made on a case-by-case basis. As part of the decision-making process, the land-use history of the source facility will be evaluated, existing environmental reports and analytical data will be reviewed, and the geotechnical suitability of the material will be assessed. If additional analytical testing of the material is deemed warranted after input from the MDA and MPCA, samples will be collected at a frequency of at least one sample per material type and a frequency no less than one sample per 2,000 CY of material. Analytical

parameters will be determined based on historic use of the source facility and the Site contaminants of concern. Analytical results will be compared to the Residential SRVs and Screening SLVs. Environmental monitoring of fill soils as they are loaded into trucks from the source facilities will be conducted if warranted based on the nature of the fill source location.

All imported fills will meet the requirements of the criteria specified in the MPCA's 2012 Unregulated Fill Guidance.

H. Soil Management Plan

This Soil Management Plan describes the management of the various soils present at the Site in regard to the RAP. Detailed procedures for soil management and activities related to this RAP will be included in engineering specifications that will be prepared prior to response action plan implementation.

H.1. Existing Cover and General Plan for Site Soils

The surface cover at the Site currently includes primarily grass covered open greenspace areas, mixed vegetation greenspace areas, buildings, cart paths, a parking lot, water features, and potential wetlands.

The future surface cover at the Site will include public streets, the future building pads, residential driveways, commercial parking lots and drive areas and associated curbs and drainage features, and greenspace areas.

During RAP Implementation, the known areas of impacted soils and debris-bearing fill soils exceeding the established Site cleanup standards will be excavated and managed to meet the Residential/Recreational and Commercial/Industrial SRVs and/or screening SLVs and then extending to depths sufficient to reach geotechnically suitable soils for constructing new pavement areas and associated utilities and excavated to environmentally suitable soils in the greenspace areas.

The impacted soils with concentrations of contaminants above Residential/Recreational and/or Commercial/Industrial SRVs, screening SLVs, unregulated fill criteria, including soils mixed with debris, once excavated will be either temporarily stockpiled, and/or directly hauled off-Site for disposal at a permitted landfill.

Soils impacted with residual contaminant concentrations below Site cleanup goals, but above background concentrations will be managed on Site if the soils are suitable for the planned Site development.

H.2. Site Soil Types

The primary soil types have been documented at the Site, including:

- Variable fill soils/fill soils with debris
- Organic soils/peat
- Alluvium, fluvial and glacial tills

Descriptions of these soil types are presented in Section C.2 and the nature of impacts are described in Sections C.3 and Section D of this document.

H.3. Site Earth Work Requirements for Existing Conditions

The Site response actions require earthwork for the proper management of mercury, PAHs, arsenic, and petroleum impacted soils at the Site. The scope of earthwork has been determined based on the environmental requirements to ensure that the COCs do not pose a risk to human health or the environment during and after the Site redevelopment. This section presents the requirements for the Site earthwork to ensure the environmental requirements are met in accordance with the RAP.

H.3.a. Environmental Soil Classifications

Based on previous environmental investigations the known COCs at the Site include mercury, arsenic, PAHs, and petroleum. The presence and magnitude (concentrations) of the COCs are not evenly distributed across the entire Site.

Figure 10 illustrates the known areas of soils that would be considered as regulated fill soils per the MPCA's Off-Site Use of Regulated Fill Policy, March 2012.

The soils at the Site will be placed into three use categories to be followed during RAP implementation. The three soils classification categories are provided in the following sections.

H.3.a.1. Type 1 Soils

These are either on Site soils or imported soils that meet the requirements to be considered unregulated fill per MPCA guidance. These soils may be reused on Site with no environmental restrictions. All geotechnically suitable Type 1 soils may be placed beneath buildings, pavements, and in utility corridors.

H.3.a.2. Type 2 Soils

Type 2 soils are soils from the tee boxes, fairways, ponds, and wetlands that contain residual mercury COCs impacts below the Residential/Recreational SRVs, but are above typical background concentrations for mercury and other COCs in soils in this region.

Type 2 soils reuse will be restricted to relocation and placement in portions of the Site zoned for future commercial/industrial use, and beneath public roads. Type 2 soils will not be placed in the portions of the Site zoned for residential use, wetlands, ponds, recreational greenspaces, or within 10-feet of the shallow water table at the Site.

H.3.a.3. Type 3 Soils

Type 3 soil are those on-Site soils that contain concentrations of contaminants exceeding appropriate SRVs/SLVs and/or petroleum cleanup standards. The areas of contaminated soils meeting the definition of Type 3 soils have been described above and are shown on Figure 10. Type 3 soils will be excavated and transported off-Site for proper disposal at an approved permitted facility. Figure 10 includes the calculated volumes of Type 2 and Type 3 soils based upon the results of the RI and subsequent soil sampling and analysis.

The remedial excavations in relation the planned development are shown on Figure 15.

H.4. Future Soil Placement Considerations

H.4.a. Pavements and Building Pads

All geotechnical suitable Type 1 and Type 2 Soils (per the restrictions outlined above in Section H.3) may be placed beneath pavements and building pads if determined to be geotechnically suitable for that purpose.

H.4.b. Utility Corridors

Utility Corridors will be constructed to ensure future workers installing or maintaining buried utilities will not be exposed to known COCs. The utility corridors will be constructed within soils meeting the established site cleanup standards. In practice, this will require that the excavation of debris and/or impacted soils that are present within the utility corridors will be completed and documented in advance of utility excavation. And placement of approved soils. The soils approved for use in the utility corridors include Type 1 and Type 2 Soils to the degree the materials are geotechnically suitable for the intended use and per the restrictions in Section H.3 for Type 2 soils.

In accordance with the RAP, soils placed into utility corridors must meet the following requirements:

- Soils will meet Residential/Recreational SRVs, including PAHs as expressed in benzo(a)pyrene
 (BaP) equivalent concentrations of 2 mg/kg, within the utility corridor.
- Screening SLVs will be met to the water table in areas where infiltration is allowed to occur.

H.4.c. Greenspace/Wetland Areas

In accordance with the RAP, greenspace areas will contain only approved on-Site soils or approved imported fill (see section G.4). Greenspace will contain only Type 1 soils and/or Type 2 soils (per the restrictions outlined above in Section H). Impacted fill soil exceeding Site cleanup standards (Type 3 soils) that currently exists in planned future greenspace areas will be excavated. These excavated soils will be transported off-Site for proper disposal. Site soils reused on Site and imported fill must meet the requirements of the RAP.

In accordance with the RAP, imported, impacted on Site fill soils, and other on-Site soils placed in the greenspace areas must meet the following requirements:

- Soils will meet Residential/Recreational SRVs, including PAHs as expressed in BaP equivalent concentrations of 2 mg/kg.
- Screening SLVs will be met to the water table in areas where infiltration is allowed to occur.
- Contain no more than a de-minimis amount of debris.

Leaching from contaminated soil to groundwater is addressed by applying the MPCA Screening SLVs to future greenspace areas, where surface water will be managed/infiltrated, such as wetlands, passive open space, park space and other stormwater management features. Planned wetlands and other stormwater management features are shown on the development plans included in Appendix A.

H.5. Site Controls

The following controls will be necessary during the soil correction activities to ensure the work is conducted in a manner that is protective to the health and safety of on-Site workers and the general public. A Site-specific health and safety plan (HASP) detailing personal health and safety measures will be prepared for the RAP Implementation. The earthwork contractor will also prepare a HASP that will address environmental concern, as well as those concerns normally associated with excavation and compaction.

Engineering controls will be implemented during the response actions to protect human health and the environment including Site-wide dust control (to ensure adherence with the nuisance dust standard), storm water control, and Site access. These controls will be designed, planned and documented throughout the RAP implementation to ensure thoroughness and as a technique to manage the construction. The specifications will provide details to the implementation of the temporary engineering controls.

H.5.a. Fugitive Dust

The primary COC exposure route of concern at the Site is inhalation of fugitive dust with elevated mercury, metals, or PAH concentrations. Currently, the Site is covered with grass/vegetation, which generally prevents the generation of dust. When earthwork occurs within the limits of soils with elevated metals or PAHs, controls must be in place to minimize the generation of dust during work and non-work hours.

The contractor will provide the defined and specified practices to control fugitive dust generation during Site activities. The purpose is to reduce the risk of exposure to airborne materials that may contain elevated COC concentrations and silica to workers at the Site and to the general public adjacent to the Site. These practices will be implemented when impacted soils are exposed at the ground surface. Records will be kept of the date, time, location, and method of dust suppression.

Dust from grading and soil consolidation actions will be controlled by applying water to the soils being worked. Visibly dry areas will be watered as they are observed. The amount of impacted soil that is exposed at the end of each work shift will be minimized, and those areas left exposed will be sprayed down to form a crust prior to the end of each work shift. The amount of water used for dust suppression will be carefully controlled so that runoff does not occur. Records will be kept of the date, time, location, and method of dust suppression.

H.5.b. Dust Control While Working

Dust from environmentally restricted soils must be kept to a minimum. Primary dust control measures include minimizing open soil areas, wetting soil with water, use of dust suppression agents, and using stockpile management practices.

The project dust control specification will be submitted to the MDA for approval prior to development. These options are discussed below.

H.5.b.1. Minimizing Open Soil Areas

In areas where soil correction work involves debris containing fill and/or PAH or RCRA metal-impacted soils, the disturbance of these soils will be limited to what will be corrected that each day to the degree feasible.

At the end of the day, all debris fill and/or PAH or RCRA metal-impacted soils may be covered with an interim cover. Acceptable interim covers, if deemed necessary at the time, include but are not limited to:

- A minimum of 2 inches native sand, sandy fill, clean organic soils, or imported soils;
- Spraying the exposed soils with water to form a crust;
- Cover sheeting that meets the minimum specification for stockpile materials; or
- An approved dust control agent.

H.5.b.2. Wetting Soils

Dust suppression via water spraying is considered an effective control method during working hours. The amount of water used for dust suppression will be carefully controlled so that runoff does not occur.

H.5.b.3. Alternative Controls

A number of alternative dust control measures exist. The engineering specifications and contract allows for the earthwork contractor to develop alternative means and methods to complete the job in accordance with the RAP. Braun Intertec will evaluate and approve or disapprove alternative dust suppression means and methods presented by the contractor.

H.5.b.4. Non-Work Hours

At the conclusion of each workday, excavated impacted soils will be covered with an approved interim cover.

H.6. Stockpile Management

During redevelopment, stockpiles may be created for impacted soils, asphalt, concrete, Site fill material, organic soils and native soils. The stockpiles will be maintained until the stockpiled material is transported off-Site or reused as fill on Site. Such stockpiles, if chemically impacted, will be covered when not being added to or subtracted from.

Stockpiles will be protected from storm water run-on/run-off and shall have effective erosion and sedimentation control features in accordance with the Stormwater Pollution Protection Plan (SWPPP). All material placement shall be in accordance with the requirements of the SWPPP. This shall include, at a minimum, installing berms or silt fences around potentially impacted soil stockpiles.

Soil stockpiles will be located throughout the project Site in areas adjacent to active work areas. These stockpiles will be created during the soil correction work as necessary. Stockpiles will be inspected daily to ensure cover materials are sufficient and material is not being lost to erosion/runoff.

H.7. Groundwater/Surface Water Management

During planned excavations and the installation of utilities and/or soil corrections, temporary groundwater dewatering may be necessary. Discharge and/or treatment of groundwater, stormwater, or any other dewatering action will be managed in accordance with State, Federal, and local agencies.

Contaminated groundwater and/or storm water will be managed by permit under the following approaches (as appropriate):

- A Metropolitan Council Environmental Services (MCES) temporary discharge permit may be obtained in order to facilitate the discharge of any contaminated groundwater or stormwater accumulated in Site excavations to appropriate nearby sanitary sewer connections. Monitoring, testing, and reporting will be required by MCES. Pre-discharge treatment will be completed for stormwater or groundwater collected during construction with contaminant concentrations or characteristics exceeding permit requirements. Anticipated pretreatment approaches (if required) could include product separation and/or carbon treatment.
- A National Pollutant Discharge Elimination System (NPDES) discharge permit may also be obtained in order to facilitate the discharge of construction-related water to appropriate nearby storm sewer connections. Monthly monitoring, testing and/or treatment and quarterly reporting would be required by the permit.

The MDA and MPCA will be notified when a final groundwater/dewatering plan is decided (if necessary).

I. Construction Observation and Documentation Plan

The following sections describe the types of observations that will be made and the types of documentation that will be prepared during implementation of the response action elements.

I.1. Field Reports

Field reports will be prepared to document construction activities at the end of each day. These reports will include the following information as applicable:

- Contractor's activities including type and volumes of material excavated and/or replaced (as necessary);
- Weather conditions at the Site, including any precipitation and wind conditions;
- Contractor's efforts in reducing dusty conditions or activities to eliminate Site runoff during wet conditions;
- Details of completed testing or samples collected for laboratory testing;
- Any unforeseen Site conditions encountered during the Work;
- Contractor's equipment that is on-Site and being used; and
- Health and safety status and issues.

I.2. Forms

Appendix F contains the forms that will be used as warranted to document construction activities, including:

- Daily Field Report;
- Project Health and Safety Field Meeting Form;
- Incident Report Form;
- Chain-of-Custody Record;
- Sample Control Log;
- Boring Log Form;
- Test Trench Form; and
- Air Monitoring Log.

I.3. Problem/Deficiency Identification and Corrective Action

The General Contractor and/or Earthwork Contractor will be required to inform the Braun Intertec Project Manager and the Owner, in a timely manner, of any problems/deficiencies that arise during RAP Implementation.

I.4. Plan Modification

Any proposed modifications to the RAP will be communicated to the MPCA in a timely manner. The RAP shall be modified if appropriate with written approval of the MDA, MPCA, Owner, and the Project Manager. A plan for any RAP modifications will be prepared if required and provided for the MDA and MPCA Project Managers for approval.

I.5. Photographs

The Braun Intertec environmental technician will take photographs to document observations, problems, and/or deficiencies, or Work in progress. The photographs for this project will include, at a minimum, the following:

- Pre-construction conditions
- Excavation of soils
- Stockpiling of soils
- Any unforeseen Site conditions encountered during construction
- Any compaction and backfilling taking place in excavated areas
- Grading operations
- Dust and water control operations
- Soil and water sampling
- Air monitoring
- Well and/or process utility abandonment
- Temporary closure activities
- Erosion control and storm water control procedures

J. Work Controls

The following sections describe the horizontal and vertical controls, environmental monitoring, access, and erosion control.

J.1. Horizontal and Vertical Controls

The reporting of results will require accurate knowledge of the actual Site elevations and locations. The topographic survey of the Site performed and will be used to prepare maps of the Site and to document areas of excavations and volumes of materials excavated or filled on-Site.

J.2. Environmental Monitoring During the Work

Air monitoring of vapors and dust emanating from excavations will be performed in accordance with the specific Site HASP. Organic vapors will be monitored using a PID to monitor worker breathing zones. Dust may be monitored using portable dust monitors. Other monitoring equipment for measuring oxygen, carbon dioxide, methane, explosive vapors (LEL), and other hazards will be available, if needed.

J.3. Erosion Control

The earthwork contractor will be responsible for implementing appropriate erosion controls in accordance with general permit requirements for stormwater control at construction sites. This typically includes installation of silt fences at the project boundaries and limits of excavations to control erosion during work on-Site. In addition, the Contractor will be responsible for providing rock construction entrances or performing street sweeping to prevent muddy or dusty conditions on city streets.

K. RAP Implementation Report

Following completion of response actions for the redevelopment, a RAP Implementation Report will be prepared and submitted to the MDA and MPCA for review and approval. The RAP Implementation Report will include the following at a minimum:

- Overview of the environmental response actions performed.
- Documentation of pre-demolition hazardous materials removal for demolished buildings.
- Documentation of water well and monitoring well sealing.
- Summary of environmental monitoring results during construction.
- Documentation of all contaminated soil excavations for materials targeted for off-site disposal (Type 3 Soils).
- Documentation of excavation and on-site placement of Type 2 soils meeting established geotechnical criteria.
- Disposal documentation including manifests and disposal facility approvals.
- Summary of off-site disposal material types and volumes.
- Documentation of imported fill sources and associated analytical testing results.
- All soil and groundwater analytical testing results completed for RAP implementation, including post-excavation verification sampling/testing results.
- Descriptions and documentation related to contingency actions (if any) completed during construction.
- Photographic documentation of response actions completed.

L. Construction Contingency Plan

The objective of this Construction Contingency Plan is to provide a protocol that will be followed if unanticipated environmental conditions are encountered during RAP Implementation and construction activities. These environmental conditions may include, but are not limited to:

- Buried drums or other containers.
- Underground storage tanks.
- Wells.
- Buried Debris.
- Asbestos-containing material.
- Buried foundations from historical structures.
- All other unknown contaminated media.

Specifically, based upon the Site history and the conditions observed during previous investigations, Braun Intertec has developed procedures related to the following unanticipated conditions could be encountered during construction and development activities at the Site:

- Petroleum impacted soils
- Buried demolition debris
- Unsealed wells

For the purposes of this CCP, indicators of potentially contaminated soil or groundwater include, but are not limited to the following:

- Odor, including gasoline, diesel, creosote (odor of railroad ties), mothballs, or other chemical-like odor.
- Soil stained green or black (not due to organic content), or with dark, oily appearance, or any unusual soil color or texture.
- A rainbow color (sheen) on contact water or soil.

Indicators of regulated wastes include, but are not limited to the following:

Cans, bottles, glass, scrap metal, or wood (indicators of solid waste and a possible dump).

- Concrete or asphalt rubble (indicators of demolition waste).
- Roofing materials, shingles, siding, vermiculite, floor tiles, or any fibrous material (indicators of demolition waste that could contain asbestos, lead or other chemicals).
- Culverts or other pipes with tar-like coating, insulation or transite (indicators of asbestos).
- Ash (ash from burning or regulated materials may contain lead or other chemicals).
- Sandblast residue (could contain lead or other metals).
- Treated wood, including, but limited to, products referred to as green-treated, brown-treated or creosote (treated wood disposal is regulated).
- Chemical containers such as storage tanks, drums, filters or other containers (possible sources
 of chemical contaminants).
- Old basements with intact floor tiles or insulation (could contain asbestos), sumps (could contain chemical waste), waste traps (could contain oily waste) or cesspools (could contain chemical or oily wastes)

L.1. Notification Requirements

In the event that unanticipated contaminated materials or debris are encountered during construction when the environmental consultant is not on Site, work in the area shall cease immediately, and the work area shall be secured. Work outside of the vicinity of the discovery area can continue if conditions remain safe to do so for project personnel and the surrounding community. The contractor shall immediately notify the owner and/or the owner's representative. At the owner's and/or owner's representative's request, the environmental consultant will mobilize to the Site in the event that contamination is encountered. At this time, the soils will be assessed in-situ as part of a preliminary reconnaissance for the presence of contamination using both visual and olfactory indications of contamination, as well as laboratory analysis.

L.2. Communications

Communications include notifying the Braun Intertec Project Manager, who will notify the MDA and MPCA project managers of the unanticipated condition, the preliminary assessment of the hazard, and the expected response. The response may include collecting samples of wastes, soil, or water for chemical analysis or performing containerization or isolation activities prior to arranging for disposal.

Minnesota Department of Agriculture

Josh Leable 651-201-6632 Stuart Orlowski 651-201-6148

Minnesota Pollution Control Agency

Andrew Nichols (VIC Program) 651-757-2612 Mark Koplitz (PB Program) 651-757-2283

L.3. First Response

The Field Representative will perform field sampling and air monitoring. Field equipment to be kept available on short notice will include a PID or equivalent, a portable dust meter, a combustible gas indicator, and containers and equipment for various air, water, and soil sampling which may be required. In addition, equipment and supplies as required for implementing the site-specific HASP will be available for use as needed.

L.4. Preliminary Reconnaissance

If contamination or regulated waste is unexpectedly encountered, the environmental consultant will mobilize to the Site to conduct a preliminary reconnaissance. During the preliminary reconnaissance, the environmental consultant will begin assessing the situation and obtaining air monitoring data with a PID, oxygen detector, or combustible gas indicator in accordance with procedures in the Site-specific HASP. If conditions are safe, samples will be collected for field screening by visual observation and for jar headspace screening with a PID. This field screening data will be used to assess the hazard and develop a plan for response.

Samples of the potentially impacted soil will be collected from any stockpiles or from the excavation base and sidewalls for headspace screening using a PID using MPCA recommended methodologies.

A minimum of one sample for headspace analysis will be collected for every 10 CY of material removed. Visual and indirect olfactory indications of contamination will be noted. Screening results will be documented, and Site photographs will be taken, as appropriate.

As part of the preliminary reconnaissance, any potentially contaminated soil that is stockpiled will be placed on polyethylene sheeting or other impervious surfaces and covered with polyethylene sheeting that is secured in place. Staging areas for potentially impacted soil or material will be clearly marked. The results of the preliminary reconnaissance will be provided to the owner and/or the owner's

representative. The contractor will not be allowed to continue to work in the area until the type(s) of contamination is identified and an appropriate response action is defined by the owner and/or the owner's environmental representative.

L.5. Isolation

Isolation includes placing small containers or small quantities of soil into 55-gallon drums for containment or backfilling the excavation if larger containers or large quantities of impacted materials are present. The anticipated response for large quantities of hazardous materials is the notification of an emergency response contractor to develop a plan to isolate and contain the hazardous materials until treatment or disposal options can be determined. At least five new 55-gallon drums will be available on Site to containerize hazardous materials if necessary. If buried debris such as concrete or wood is encountered; the material will be excavated and stockpiled. It is anticipated that buried debris that cannot be re-used on Site can be disposed of in a landfill for demolition debris or municipal solid waste.

L.6. Emergency Response Contractors

Arrangements with various emergency response contractors will be made prior to starting work at the site in order to allow immediate response to unanticipated conditions. The Contractor and/or excavation subcontractor will most likely perform excavation and trucking of materials on Site or off Site. The following contractors may be utilized for response to emergencies or other situations at the Site:

Name of Contractor

Stevens Drilling and Environmental 6240 Highway 12 West Maple Plain, MN 55359 763,479,1797 Type of Service

Emergency Response

Minnesota Petroleum

682 39th Ave NE Columbia Heights, MN 55421 763.780.5191 Vacuum Truck

Containerization of Liquid or Oily Wastes

Pace Analytical Services

1700 Elm Street, Suite 200 Minneapolis, MN 55414 612.607.6455, Dan Nguyen **Analytical Services**

Or

Legend Technical Services

88 Empire Drive St. Paul, MN 55103 651.642.1150, Cory Campbell

Thein Well Service

11355 Highway 71 Northeast Spicer, MN 56288 320.847.3207 Well Abandonment and Replacement

Grainger Supply

201 E 78th Street Bloomington, MN 55420 (952) 888-2502 Over-Pack Container Supplier

Consolidated Container

109 NE 27th Ave, Minneapolis, MN 55418 (612) 781-0923 55-gallon Drum Supplier

The Field Representative will perform field sampling and air monitoring. Field equipment to be kept available on short notice will include a PID or equivalent, a portable dust meter, a combustible gas indicator, detector tubes (Draeger or Sensidyne) for field sampling for individual compounds, and containers and equipment for various air, water, and soil sampling which may be required. In addition, equipment and supplies as required for implementing the Site-specific HASP will be available for use as needed.

L.7. Potential Contingency Response Actions

In general, after conducting the preliminary reconnaissance and assessing the type of contamination, environmental monitoring will be conducted during excavation of potentially contaminated materials. The results of the environmental monitoring will be used to segregate and stockpile the potentially contaminated material.

If potential ACM is encountered that was not already identified, no excavation work will be conducted until the results of polarized light microscopy (PLM) testing are available. If ACM is detected, procedures established in Section H and L.7.b will be followed.

Response actions, listed by contaminant/waste type, to manage unidentified contamination that is encountered during construction are detailed below.

L.7.a. Petroleum-Contaminated Soils

If petroleum-contaminated soils are identified during construction, soils will be segregated and handled in accordance with MPCA Petroleum Remediation Guidance Document 3.01 "Excavation of Petroleum Contaminated soil and Tank Removal Sampling."

L.7.b. Debris and Asbestos-Containing Materials

In the event that debris suspected of containing asbestos is encountered during earthwork activities, it will be evaluated in-situ for the presence of asbestos by bulk sampling and analysis by PLM. If ACM is encountered, protocol outlined in the July 1999 MPCA Asbestos Guidance on Excavation Projects will be followed including implementation of an emissions control plan (ECP). An ECP will be prepared if needed, upon request. In addition, as the debris is excavated and removed, if encountered, it will be properly recycled or soil containing greater than 10% debris will be disposed.

ACM will be properly disposed of off-Site; no soil containing ACM will be reused on Site.

L.7.c. Non-Petroleum-Impacted Soil

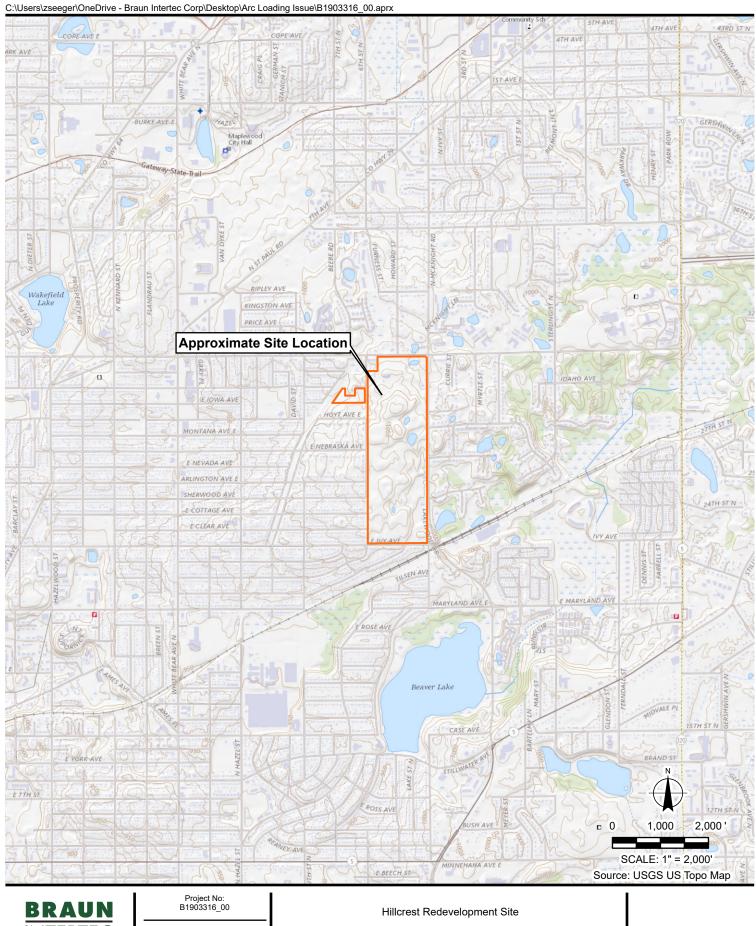
Soils that exhibit non-petroleum impacts will be segregated, stockpiled, and sampled. Field methods and procedures, analytical testing and decisions regarding soil disposition will be consistent with Braun Intertec Standard Operation Procedures (SOPs).

L.7.d. Storage Tanks or Drums

In the event that drums or other storage containers are encountered during earthwork activities, they will be removed and their condition evaluated by appropriately trained personnel. If the containers are determined to be in poor condition, the materials will be transferred to a new drum that is in good condition. The drums will be placed in a secure location. Containerized materials will be evaluated, tested, and properly disposed.

Soil from the area around the container will be screened for indications of contamination. Potentially impacted soil will be segregated and stockpiled. Soil samples will be collected from stockpiled materials for chemical analyses and confirmation soil samples will be collected from remaining in-place soil.

If a possible UST is indicated by a metal or concrete surface, is encountered during excavation activities, the area around the possible underground structure will be carefully excavated. The underground structure will be tested to evaluate the depth to bottom or the presence of liquid. If liquid is present, further testing will be conducted to evaluate its contents. Liquid will be removed by pumping prior to removal and disposal of the structure. All UST contents will be handled in accordance with MPCA and Occupational Safety & Health Administration (OSHA) requirements. The UST will be removed by a licensed UST removal contractor and will be completed in accordance with MPCA requirements. Soil surrounding the tank or structure will be monitored for possible impacts and sampled for chemical analyses in accordance with MPCA, Petroleum Remediation Program, Guidance Document #3-01.


L.7.e. On-Site Wells and Septic Systems

All unused wells must be sealed by a licensed well contractor in accordance with MDH regulations. Septic systems also should be properly abandoned in accordance with local and state code.

Figures

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing No: B1903316_00_Fig 1

Drawn By: ZS Date Drawn: 2/28/2022 Checked By: MK Last Modified: 6/28/2022 McKnight Road N and Larpenteur Avenue E

St. Paul, Minnesota

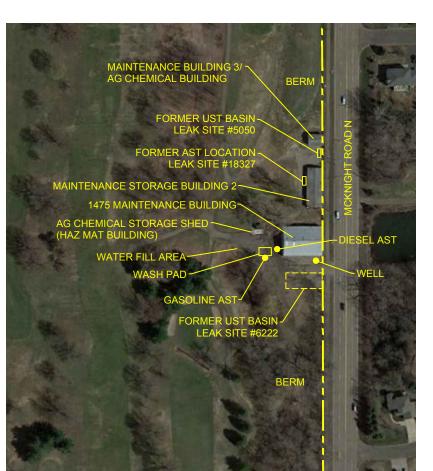
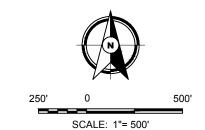

Site Location Map

Figure 1



INSET 1: CLUBHOUSE AREA SCALE: 1" = 120'

INSET 2: MAINTENANCE FACILITY
SCALE: 1" = 200'

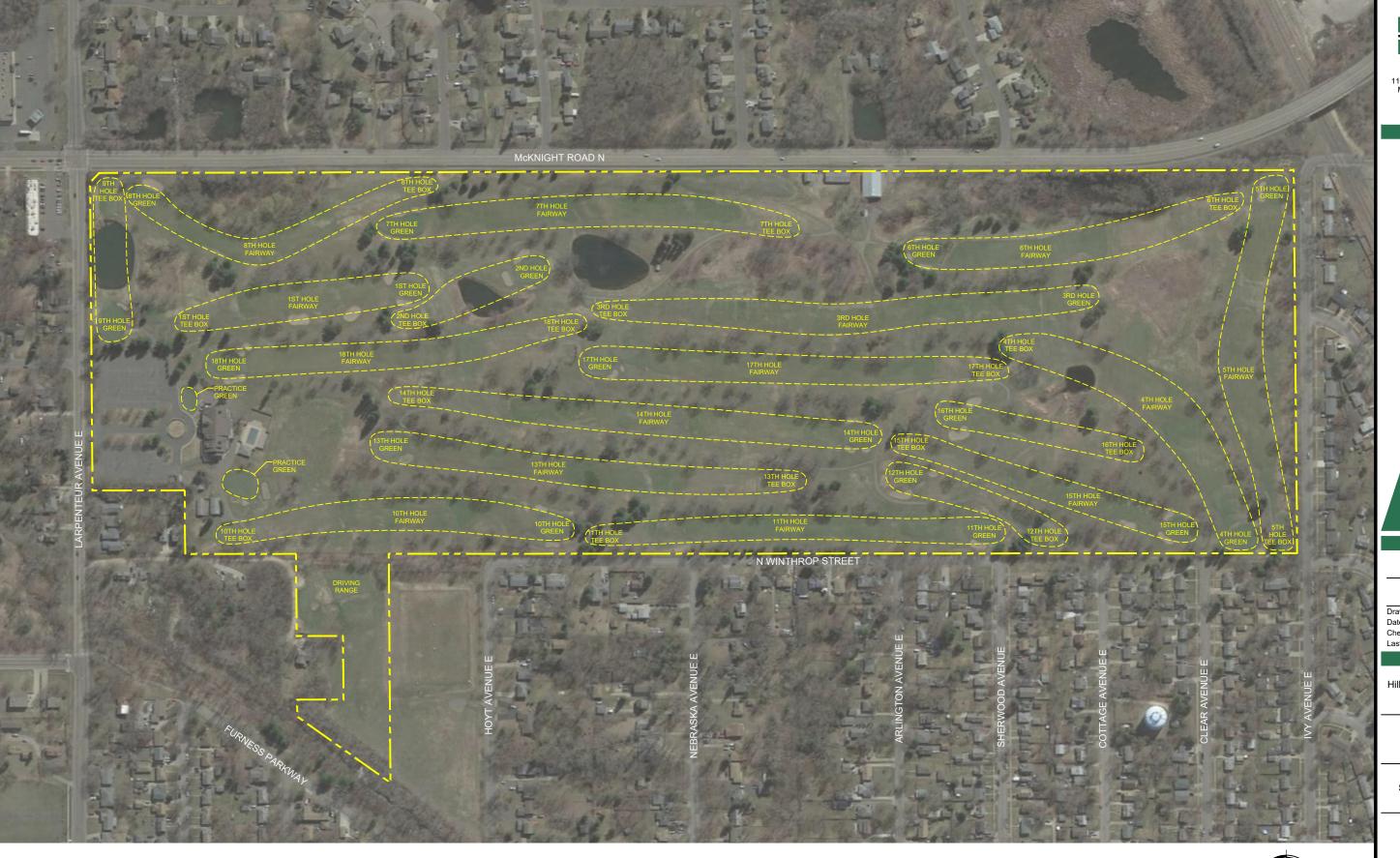
BRAUN INTERTEC

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

Last Modified: 8/31/22


Hillcrest Redevelopment

McKnight Road N and Larpenteur Avenue E

St. Paul, Minnesota

Current Site Conditions

Figure 2

BRAUN

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

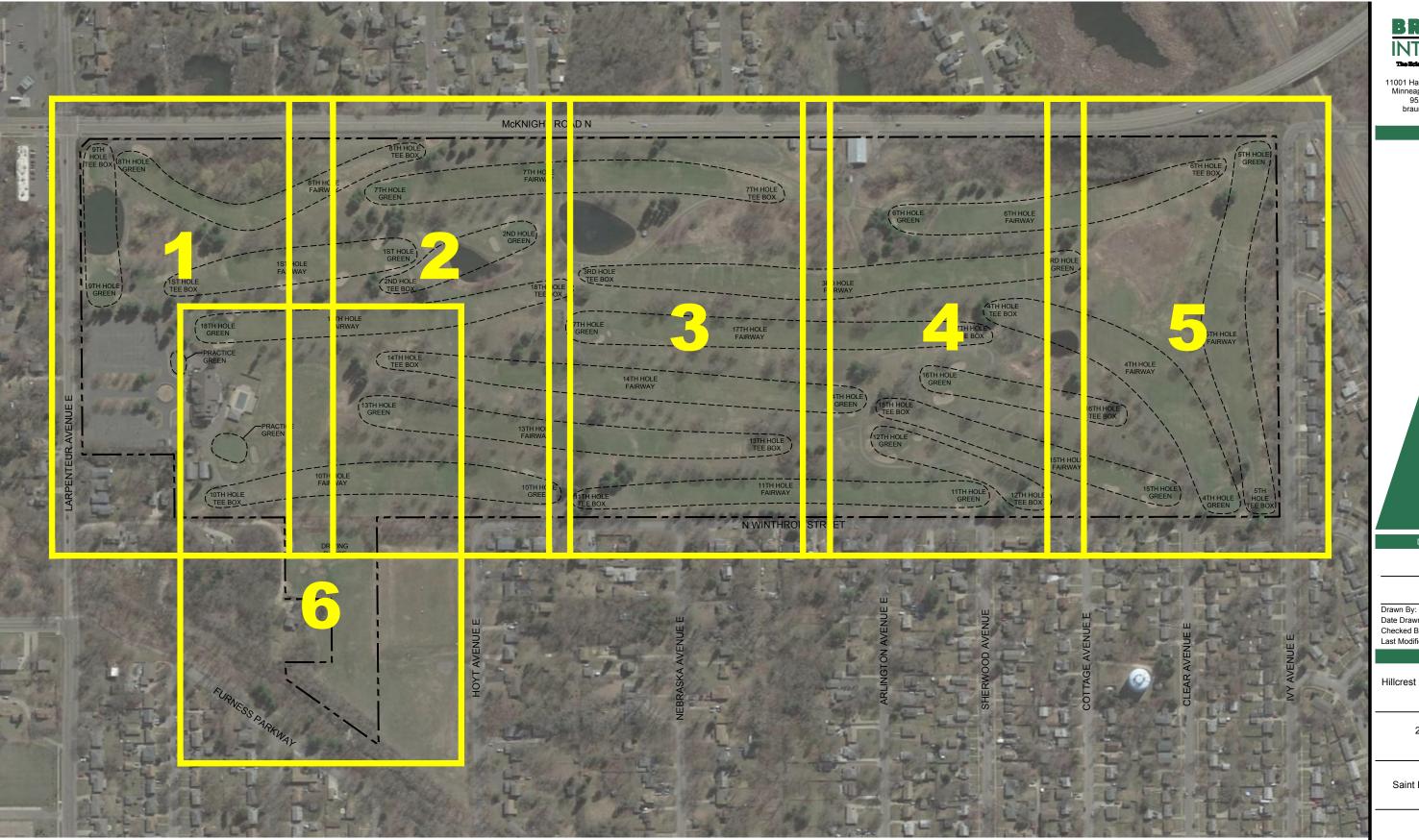
Project No: B1903316

Drawing No: B1903316A BJB

Drawn By: BJB
Date Drawn: 5/23/19
Checked By: MK
Last Modified: 2/28/22

Project Information

Hillcrest Redevelopment Site


> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Former Golf Course Layout

SCALE: 1" = 300'

300'

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

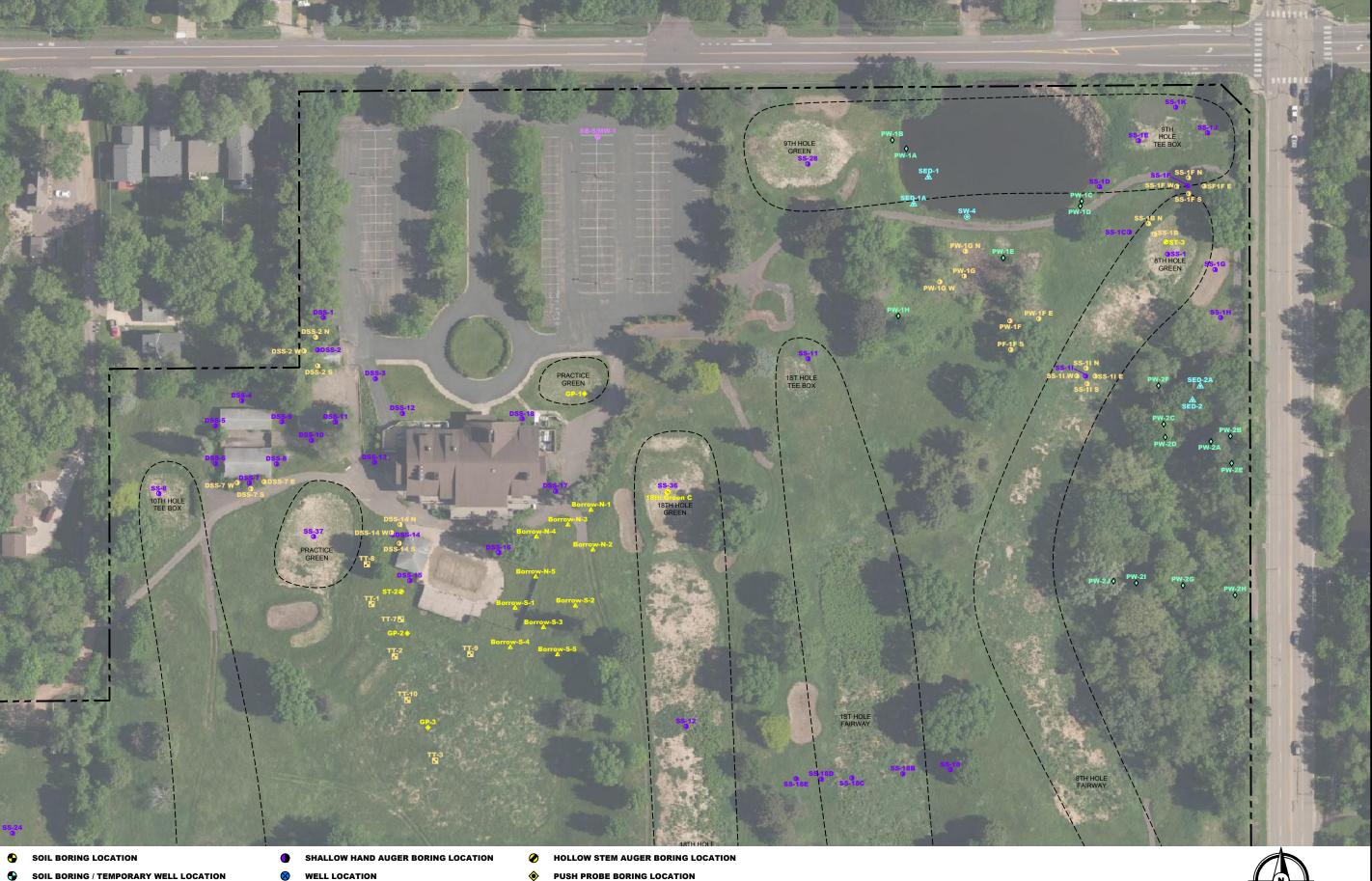
Project No: B1903316.00

Drawing No: B1903316-00H

Date Drawn: 5/23/19
Checked By: MK
Last Modified: 8/24/22

Project Information

Hillcrest Redevelopment Site


> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Investigation Locations Sheet Overview Map

0 300' SCALE: 1" = 300'

Figure 4

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: 5/23/19 Checked By: Last Modified: 8/24/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Investigation

Locations

Sheet: 01 of 06

SCALE: 1" = 100'

- MONITORING WELL LOCATION AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION

- WELL LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- \Diamond POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)
- **▲** CONFIRMATION SAMPLE LOCATION

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: Checked By: Last Modified: 8/24/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Investigation

Locations

Sheet: 02 of 06

100'

SCALE: 1" = 100'

SOIL BORING / PERMANENT WELL LOCATION

MONITORING WELL LOCATION AGRICULTURAL CHEMICAL SOIL BORING LOCATION

TEST TRENCH LOCATION

SURFACE WATER SAMPLE

SEDIMENT SAMPLE LOCATION

 \Diamond POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

COMPOSITE SOIL SAMPLE LOCATION

SHALLOW HAND AUGER BORING LOCATION (2021)

Project No: B1903316.00

Drawing No: B1903316-00H BJB

Drawn By: Date Drawn: Checked By:

Last Modified: 8/24/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Investigation

Locations

SCALE: 1" = 100'

Sheet: 03 of 06

AGRICULTURAL CHEMICAL SOIL BORING LOCATION TEST TRENCH LOCATION

MONITORING WELL LOCATION

SURFACE WATER SAMPLE

SEDIMENT SAMPLE LOCATION \Diamond POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

COMPOSITE SOIL SAMPLE LOCATION

SHALLOW HAND AUGER BORING LOCATION (2021)

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: Checked By:

Last Modified: 8/24/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Investigation

Locations

Sheet: 04 of 06

100'

SCALE: 1" = 100'

AGRICULTURAL CHEMICAL SOIL BORING LOCATION

MONITORING WELL LOCATION

TEST TRENCH LOCATION

SURFACE WATER SAMPLE

SEDIMENT SAMPLE LOCATION

 \Diamond POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

COMPOSITE SOIL SAMPLE LOCATION

SHALLOW HAND AUGER BORING LOCATION (2021)

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Project No: B1903316.00

Drawing No: B1903316-00H

BJB

5/23/19

8/24/22

Investigation Locations

Sheet: 05 of 06

100'

SCALE: 1" = 100'

- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION

- WELL LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- \Diamond POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)
- **▲** CONFIRMATION SAMPLE LOCATION

SHALLOW HAND AUGER BORING LOCATION (2021)

▲ CONFIRMATION SAMPLE LOCATION

MONITORING WELL LOCATION

TEST TRENCH LOCATION

AGRICULTURAL CHEMICAL SOIL BORING LOCATION

SEDIMENT SAMPLE LOCATION

POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

 \Diamond

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: 5/23/19 Checked By: Last Modified: 8/24/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E


Saint Paul, Minnesota

Investigation Locations

Sheet: 06 of 06

100'

SCALE: 1" = 100'

Drawing Information

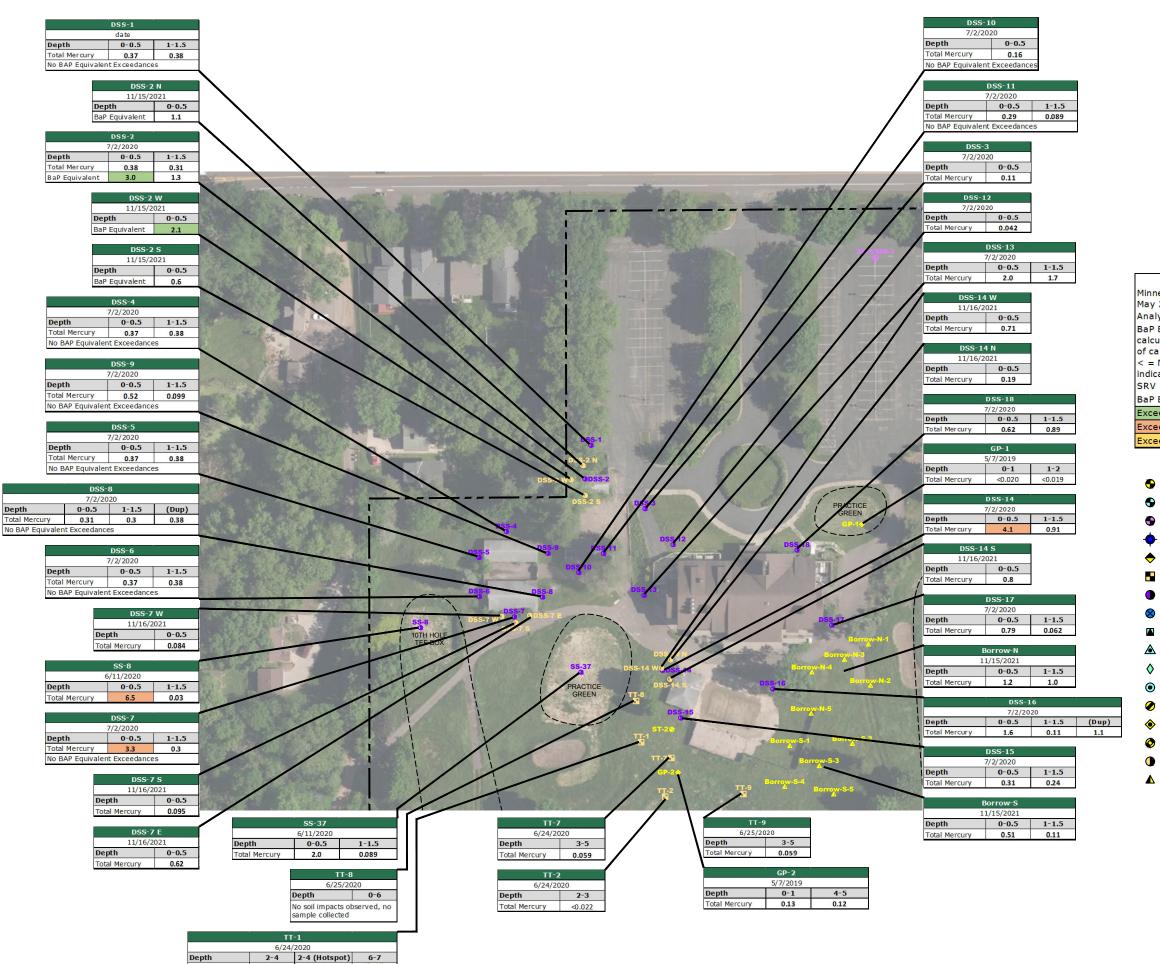
Project No: B1903316.00

Drawing No: B1903316-00H

Date Drawn: 5/23/19
Checked By: MK
Last Modified: 8/24/22

Project Information

Hillcrest Redevelopment Site


> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results Sheet Overview Map

0 300' SCALE: 1" = 300'

Figure 5

0.064 0.45

<10.6 **199.0** <10.9

Total Mercury <0.019

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

NOTES
Minnesota Pollution Control Agency (MPCA) SRVs updated
May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION
- SHALLOW HAND AUGER BORING LOCATION
- WELL LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- HOLLOW STEM AUGER BORING LOCATION
- PUSH PROBE BORING LOCATION
- O COMPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)

SCALE: 1" = 100'

CONFIRMATION SAMPLE LOCATION

Soil Analytical

Drawn By:

Date Drawn:

Checked By:

Last Modified:

Hillcrest Redevelopment

2200 Larpenteur

Saint Paul, Minnesota

Avenue E

Results

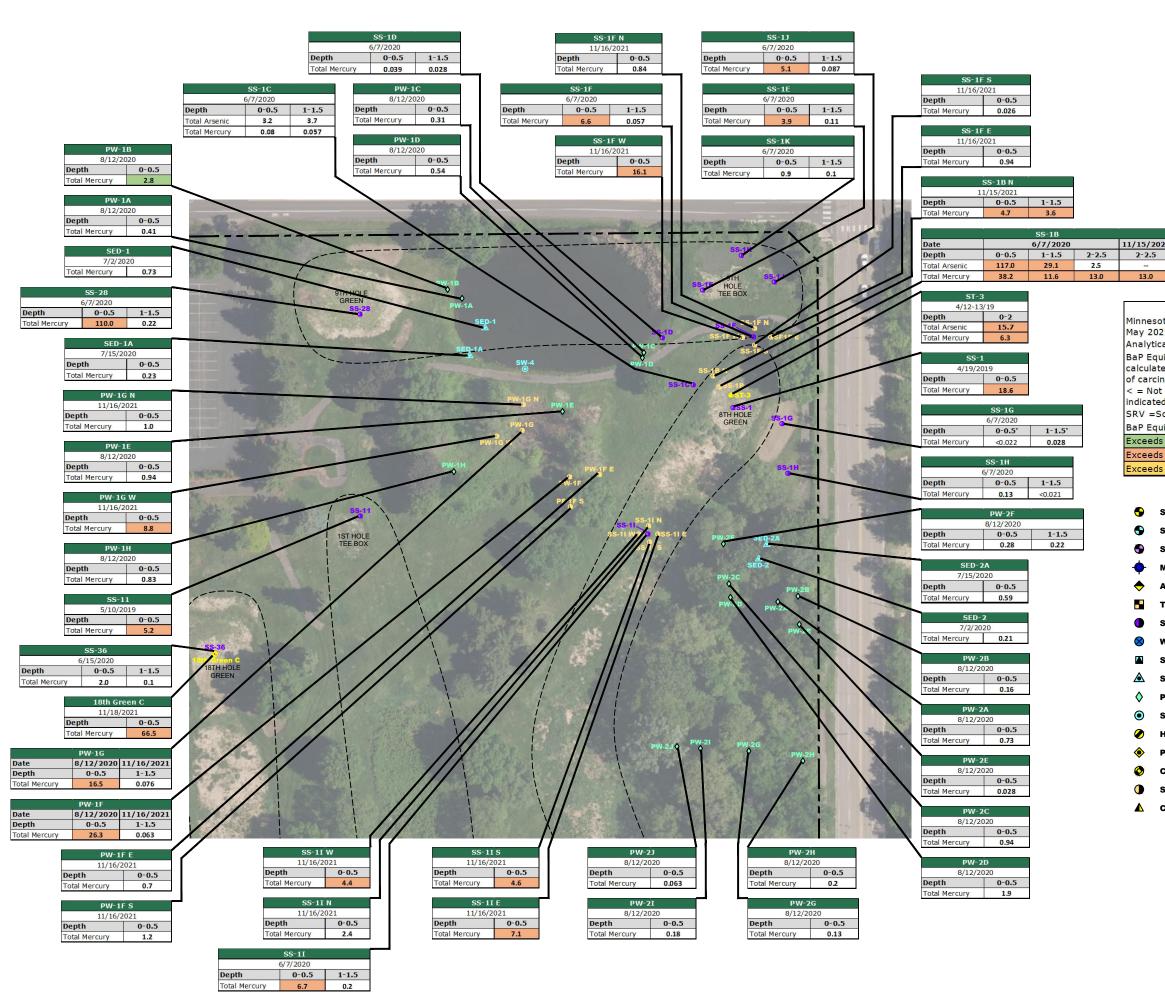
Sheet: 01 of 13

5

Project No:

Drawing No: B1903316-00H

BJB


MK

5/23/19

8/24/22

Site

B1903316.00

NOTES Agency

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg).

BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is
calculated based on the concentration and weighted toxicity
of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION
- SHALLOW HAND AUGER BORING LOCATION
- WELL LOCATION
- SURFACE WATER SAMPLE
- **▲** SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- HOLLOW STEM AUGER BORING LOCATION
- PUSH PROBE BORING LOCATION
- O COMPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)
- CONFIRMATION SAMPLE LOCATION

SCALE: 1" = 100'

Soil Analytical Results

Sheet: 02 of 13

5

Project No:

Drawing No:

BJB

5/23/19

8/24/22

Site

B1903316.00

B1903316-00H

Hillcrest Redevelopment

2200 Larpenteur

Saint Paul, Minnesota

Avenue E

Drawn By:

Date Drawn:

Checked By:

Last Modified:

0-0.5 1-1.5

SS-3B

0.1

0.9

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

NOTES

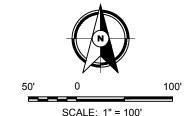
Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg).
BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is
calculated based on the concentration and weighted toxicity
of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

TT-10 6/25/2020


BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION
- SHALLOW HAND AUGER BORING LOCATION
- WELL LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- HOLLOW STEM AUGER BORING LOCATION
- PUSH PROBE BORING LOCATION
- OCCUPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)
- CONFIRMATION SAMPLE LOCATION

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB
Date Drawn: 5/23/19
Checked By: MK

Last Modified: 8/24/22

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 03 of 13

5

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**

SCALE: 1" = 100'

CONFIRMATION SAMPLE LOCATION

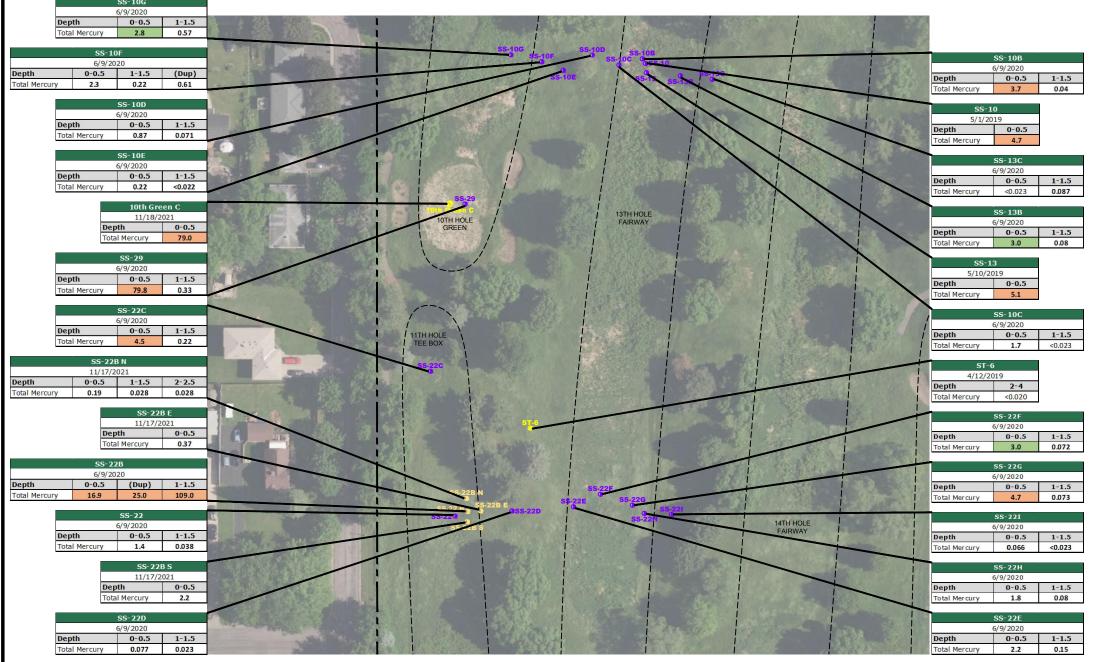
Project No: B1903316.00

Drawing No:

B1903316-00H Drawn By: BJB

Date Drawn: 5/23/19 Checked By: Last Modified:

8/24/22


Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 04 of 13

NOTES

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- **SOIL BORING / TEMPORARY WELL LOCATION**
- **SOIL BORING / PERMANENT WELL LOCATION**
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**
- CONFIRMATION SAMPLE LOCATION

Project No: B1903316.00

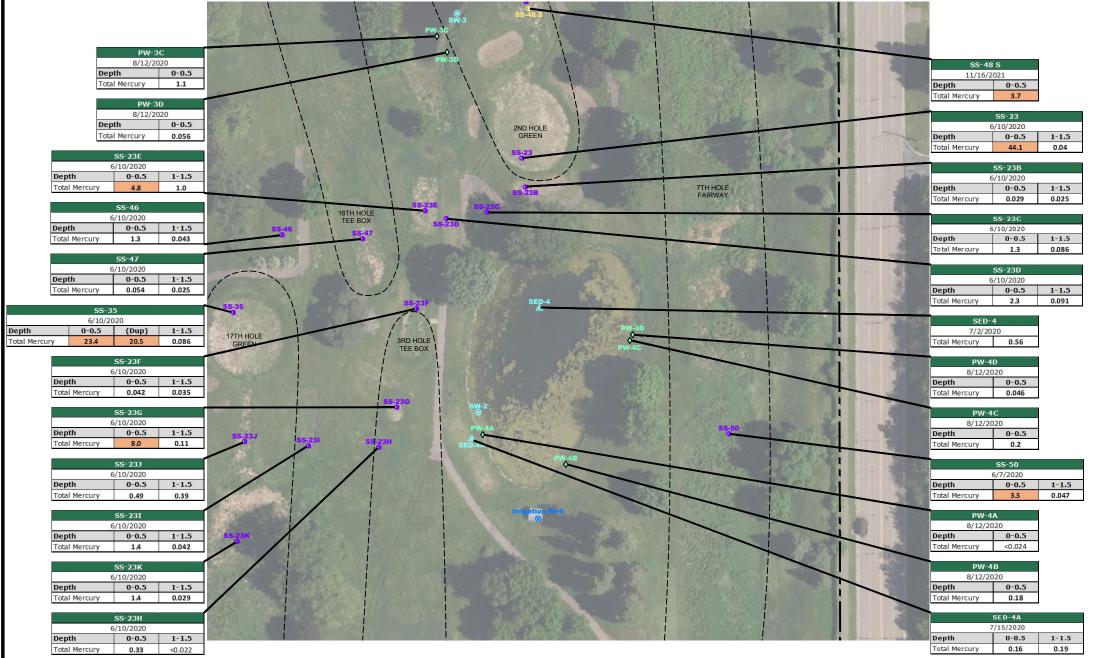
Drawing No:

B1903316-00H BJB

Drawn By: Date Drawn: 5/23/19 Checked By: Last Modified:

8/24/22

Hillcrest Redevelopment Site


> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 05 of 13

SCALE: 1" = 100'

NOTES

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION
- SHALLOW HAND AUGER BORING LOCATION
- WELL LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- ♦ POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- HOLLOW STEM AUGER BORING LOCATION
- PUSH PROBE BORING LOCATION
- OCCUPOSITE SOIL SAMPLE LOCATION
- SHALLOW HAND AUGER BORING LOCATION (2021)
- ▲ CONFIRMATION SAMPLE LOCATION

Drawing Information

Project No: B1903316.00

Drawing No:

B1903316-00H

Drawn By: BJB

Date Prayer: 5/23/19

Date Drawn: 5/23/19 Checked By: MK Last Modified: 8/24/22

Project Information

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 06 of 13

F:\2019\B1903316\CAD\B1903316-00H.dwg,06,8/24/2022 1:40:07

SCALE: 1" = 100'

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit</p> indicated.

SRV =Soil Reference Value

13TH HOLE TEE BOX

11TH HOLE FAIRWAY

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

SOIL BORING / PERMANENT WELL LOCATION

AGRICULTURAL CHEMICAL SOIL BORING LOCATION

TEST TRENCH LOCATION

SHALLOW HAND AUGER BORING LOCATION

WELL LOCATION

0-0.5 1-1.5

0-0.5 1-1.5

0-0.5 1-1.5

< 0.022

Total Mercury 2.7

SS-32

Total Mercury 1.4 1.6

40.9

SEDIMENT SAMPLE LOCATION

HOLLOW STEM AUGER BORING LOCATION

PUSH PROBE BORING LOCATION

COMPOSITE SOIL SAMPLE LOCATION

SHALLOW HAND AUGER BORING LOCATION (2021)

CONFIRMATION SAMPLE LOCATION

calculated based on the concentration and weighted toxicity

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

SOIL BORING LOCATION

SOIL BORING / TEMPORARY WELL LOCATION

MONITORING WELL LOCATION

SURFACE WATER SAMPLE

POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

SCALE: 1" = 100'

Sheet: 07 of 13

6/9/2020

Total Mercury 4.0 0.14

SS-14D

Total Mercury 0.093 <0.024

SS-14C

0-0.5 1-1.5

0-0.5 1-1.5

0-0.5 1-1.5

5/10/2019

Soil Analytical Results

Project No:

Drawing No:

BJB

5/23/19

8/24/22

Site

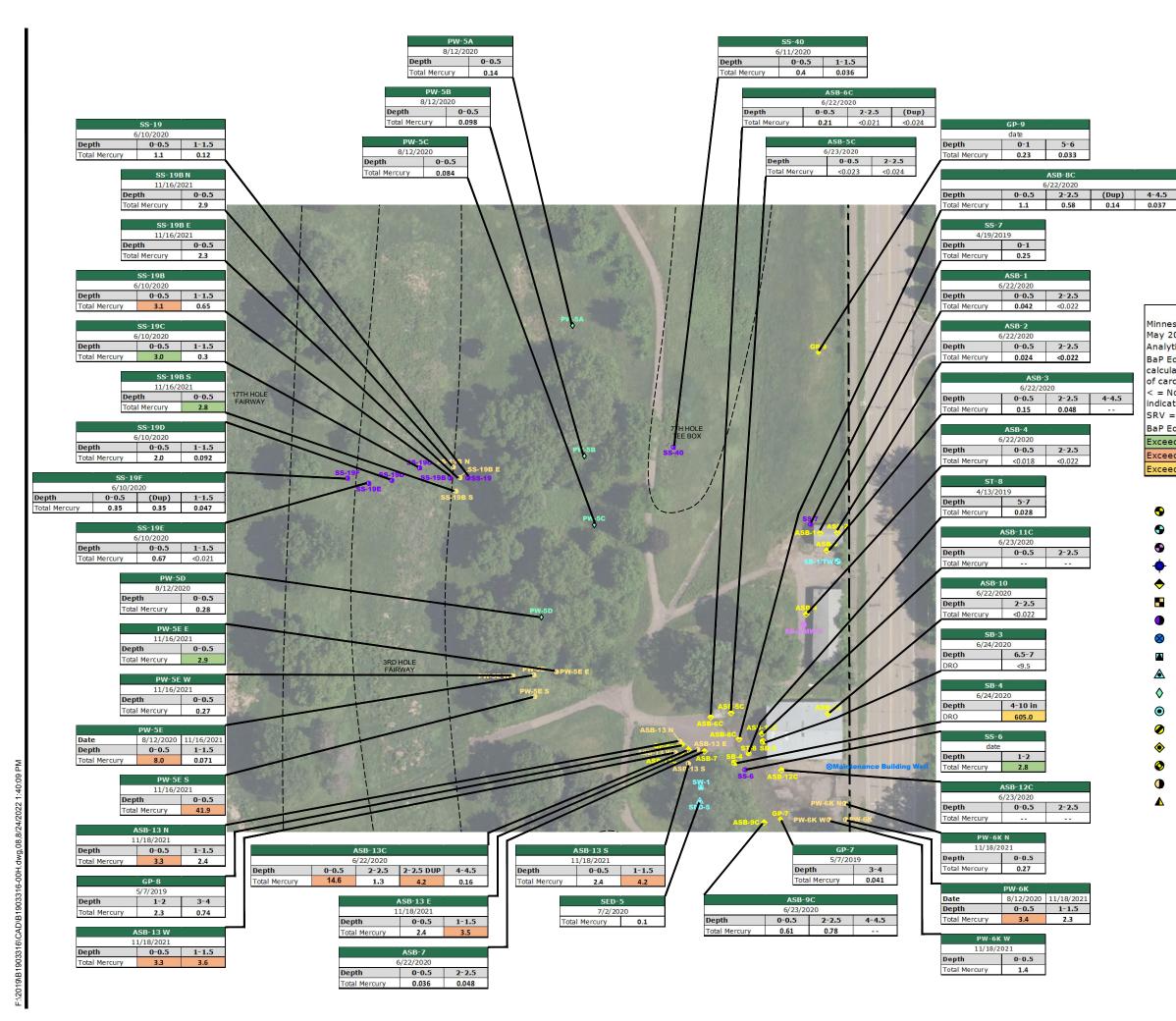
B1903316.00

B1903316-00H

Drawn By:

Date Drawn:

Checked By:


Last Modified:

Hillcrest Redevelopment

2200 Larpenteur

Saint Paul, Minnesota

Avenue E

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

NOTES

< = Not detected at or above the laboratory reporting limit</p> indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- **SOIL BORING / TEMPORARY WELL LOCATION**
- **SOIL BORING / PERMANENT WELL LOCATION**
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**
- **CONFIRMATION SAMPLE LOCATION**

SCALE: 1" = 100'

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: 5/23/19 Checked By: Last Modified:

8/24/22

Hillcrest Redevelopment

2200 Larpenteur

Avenue E

Site

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 08 of 13

NOTES

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- **SOIL BORING / TEMPORARY WELL LOCATION**
- **SOIL BORING / PERMANENT WELL LOCATION**
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**

SCALE: 1" = 100'

CONFIRMATION SAMPLE LOCATION

2200 Larpenteur

Hillcrest Redevelopment

Project No:

Drawing No:

BJB

5/23/19

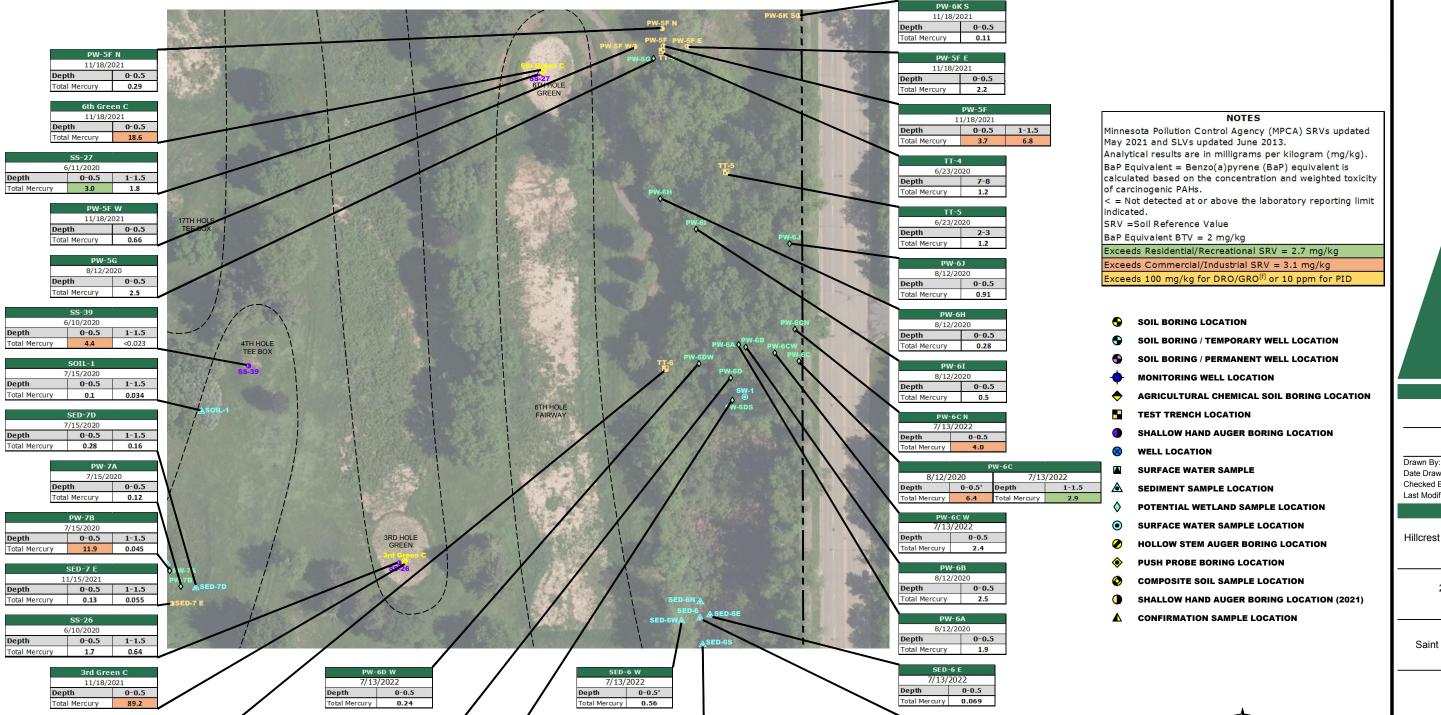
8/24/22

Site

B1903316.00

B1903316-00H

Drawn By:


Date Drawn:

Checked By:

Last Modified:

Soil Analytical Results

Sheet: 09 of 13

7/13/2022

Depth 0-0.5

Total Mercury 1.6

7/6/2020

Depth 0-0.5

0.29

Total Mercury

12.9 Total Mercury < 0.027

Depth 1-1.5 Depth 1-1.5

TT-6

8-9 8-9 DUP

8/12/2020

Depth 0-0.5 Depth 1-1.5

Total Mercury 9.3 Total Mercury 0.68

7/13/2022

7/13/2022

Project No: B1903316.00

Drawing No:

B1903316-00H dy: BJB awn: 5/23/19

Date Drawn: 5/23/19
Checked By: MK
Last Modified: 8/24/22

Project Information

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 10 of 13

SCALE: 1" = 100'

Minnesota Pollution Control Agency (MPCA) SRVs updated

Analytical results are in milligrams per kilogram (mg/kg). of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**
- CONFIRMATION SAMPLE LOCATION

May 2021 and SLVs updated June 2013.

BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity

indicated.

SRV =Soil Reference Value

SS-21G

otal Mercury 0.56 0.051

Total Mercury 0.82

16TH HOLE TEE BOX

4TH HOLE FAIRWAY

0-0.5 1-1.5

0-0.5 1-1.5

0.25

SOIL BORING / TEMPORARY WELL LOCATION

WELL LOCATION

2200 Larpenteur

Avenue E

Hillcrest Redevelopment

Drawn By:

Date Drawn:

Checked By:

Last Modified:

Project No:

Drawing No: B1903316-00H

BJB

5/23/19

8/24/22

B1903316.00

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 11 of 13

Depth

0-0.5 1-1.5

0-0.5 1-1.5

0-0.5 1-1.5

0.085

< 0.023

1-1.5

0.046

1-1.5

0.27

1.7

< 0.020

GREEN

0.12

73.0

6/11/2020

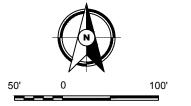
0.13

0-0.5

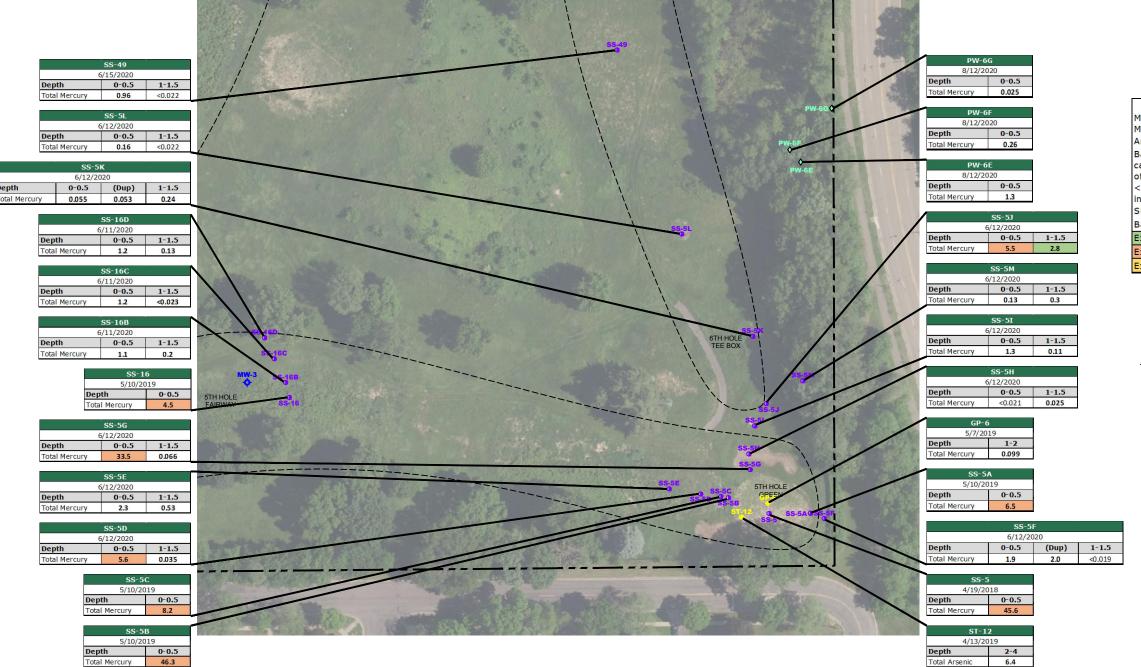
0-0.5 (Dup) 1-1.5

0-0.5

46.0


4/19/2019

4/13/2019


1-2 2-3

Total Mercury 7.0

Total Arsenic

SCALE: 1" = 100'

NOTES

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- **TEST TRENCH LOCATION**
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**

Total Arsenic 6.4

- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**

SCALE: 1" = 100'

CONFIRMATION SAMPLE LOCATION

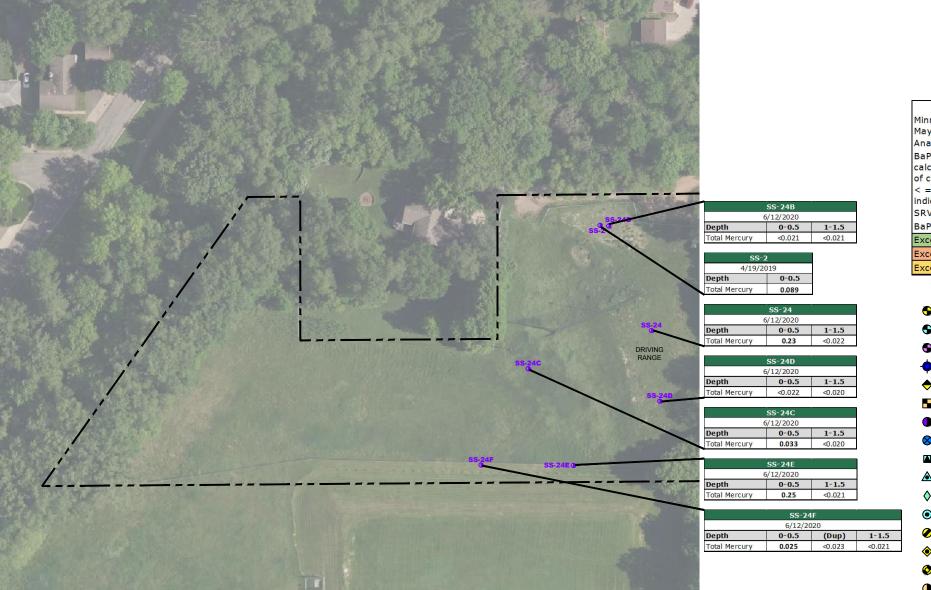
Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB Date Drawn: 5/23/19

Checked By: Last Modified: 8/24/22

Hillcrest Redevelopment


2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 12 of 13

Minneapolis, MN 55438 952.995.2000

Minnesota Pollution Control Agency (MPCA) SRVs updated May 2021 and SLVs updated June 2013.

Analytical results are in milligrams per kilogram (mg/kg). BaP Equivalent = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of carcinogenic PAHs.

< = Not detected at or above the laboratory reporting limit indicated.

SRV =Soil Reference Value

BaP Equivalent BTV = 2 mg/kg

Exceeds Residential/Recreational SRV = 2.7 mg/kg

Exceeds Commercial/Industrial SRV = 3.1 mg/kg

Exceeds 100 mg/kg for DRO/GRO^[f] or 10 ppm for PID

- SOIL BORING LOCATION
- SOIL BORING / TEMPORARY WELL LOCATION
- SOIL BORING / PERMANENT WELL LOCATION
- MONITORING WELL LOCATION
- AGRICULTURAL CHEMICAL SOIL BORING LOCATION
- TEST TRENCH LOCATION
- SHALLOW HAND AUGER BORING LOCATION
- **WELL LOCATION**
- SURFACE WATER SAMPLE
- SEDIMENT SAMPLE LOCATION
- POTENTIAL WETLAND SAMPLE LOCATION
- SURFACE WATER SAMPLE LOCATION
- **HOLLOW STEM AUGER BORING LOCATION**
- **PUSH PROBE BORING LOCATION**
- COMPOSITE SOIL SAMPLE LOCATION
- **SHALLOW HAND AUGER BORING LOCATION (2021)**

SCALE: 1" = 100'

CONFIRMATION SAMPLE LOCATION

Project No:

Drawing No:

BJB

8/24/22

B1903316.00

B1903316-00H

Drawn By:

Date Drawn:

Checked By:

Last Modified:

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Soil Analytical Results

Sheet: 13 of 13

BRAUI INTERTE

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

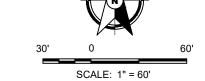
Drawing No: B1903316-00

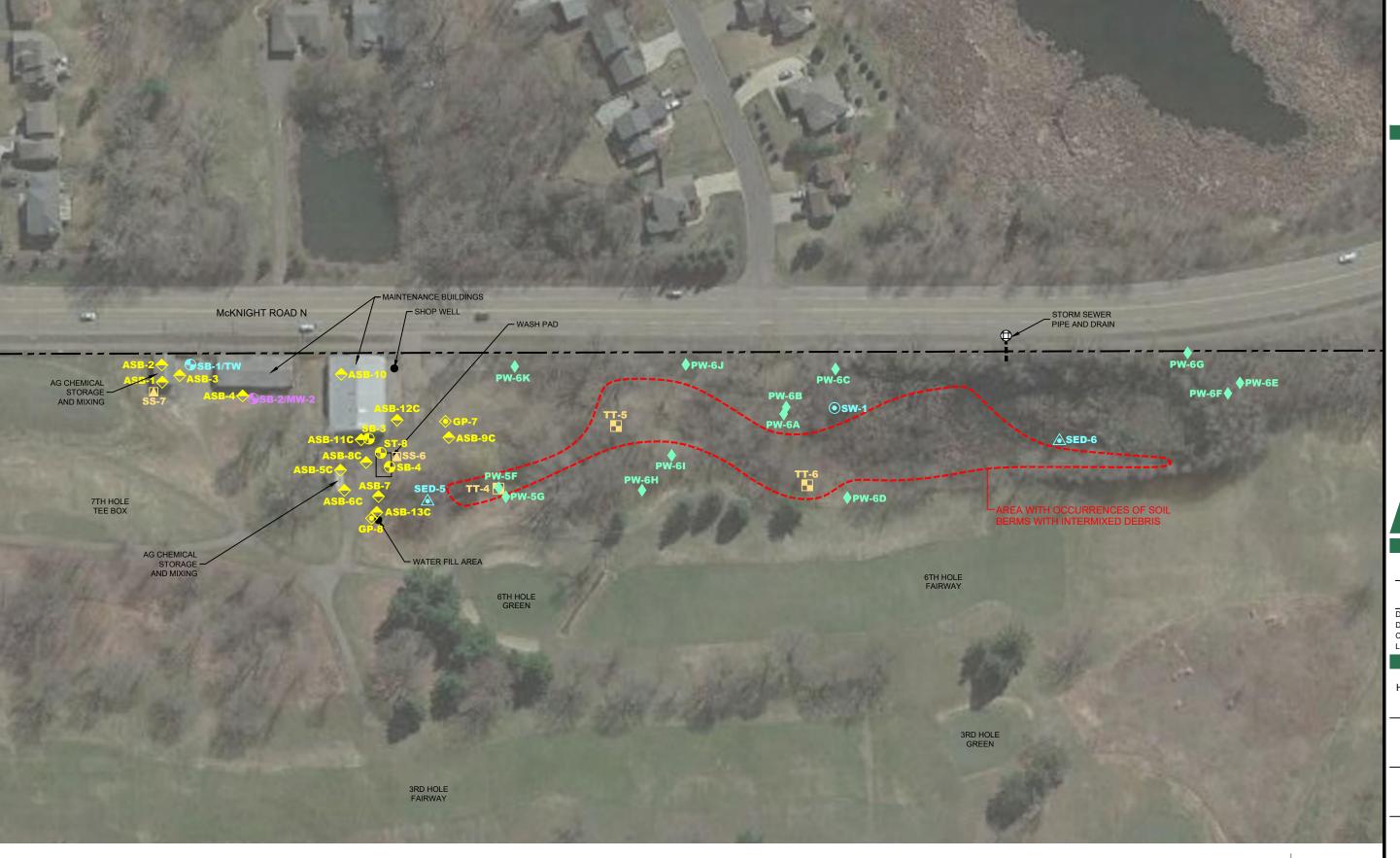
Drawn By: BJB
Date Drawn: 2/6/20
Checked By: MK
Last Modified: 2/28/22

Project Information

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E


Saint Paul, Minnesota


Clubhouse Buried Debris Area

TEST TRENCH LOCATION

SHALLOW HAND AUGER BORING LOCATION

PUSH PROBE BORING LOCATION

BRAU INTERTE

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00

Drawn By: BJB
Date Drawn: 2/6/20
Checked By: MK
Last Modified: 2/28/22

Project Information

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Maintenance Buildings Buried Debris Area

SOIL BORING LOCATION

SOIL BORING / TEMPORARY WELL LOCATION

SOIL BORING / PERMANENT WELL LOCATION

AGRICULTURAL CHEMICAL SOIL BORING LOCATION

TEST TRENCH LOCATION

▲ SEDIMENT SAMPLE LOCATION

POTENTIAL WETLAND SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

PUSH PROBE BORING LOCATION

SURFACE SOIL SAMPLE LOCATION

BRAUN INTERTEC

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00G

Date Drawn: 8/25/21 Checked By: MK Last Modified: 4/27/22

Project Information

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Fairway Mercury Soil Cleanup

Areas

Sheet: 1 of 2

150'

SCALE: 1" = 150'

COMPOSITE SOIL SAMPLE LOCATION HOT AREA

MERCURY CONCENTRATIONS IN SOIL EXCEED SOIL REFERENCE VALUE FOR MECURY

MERCURY CONCENTRATIONS IN SOIL ARE BELOW THE SOIL REFERENCE VALUE FOR MERCURY

Project No: B1903316.00

Drawing No: B1903316-00G BJB

Drawn By: Date Drawn: 8/25/21 Checked By: Last Modified: 4/27/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Fairway Mercury Soil Cleanup

Areas

150'

SCALE: 1" = 150'

MERCURY CONCENTRATIONS IN SOIL EXCEED SOIL REFERENCE VALUE FOR MECURY

MERCURY CONCENTRATIONS IN SOIL ARE BELOW THE SOIL REFERENCE VALUE FOR MERCURY

Exceeds Residential/Recreational SRV
Exceeds Commercial/Industrial SRV

COMPOSITE SOIL SAMPLE LOCATION

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00G

Drawn By: BJB
Date Drawn: 8/25/21
Checked By: MK
Last Modified: 8/25/22

Project Informatio

Hillcrest Development Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Fairway Soil Analytical Results

Sheet: 1 of 2

200'

SCALE: 1" = 200'

Fig:

Project No:

B1903316.00

Drawing No: B1903316-00G BJB 8/25/21

8/25/22

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Fairway Soil Analytical Results

Sheet: 2 of 2

SCALE: 1" = 200'

Project No: B1903316.00

Drawing No: B1903316-00G

Drawn By: BJB Date Drawn: 8/25/21 Checked By: Last Modified: 5/2/22

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Contaminated **Soil Excavation Areas**

SCALE: 1" = 150'

0.5 to 1 FT. DEPTH 2 FT. DEPTH 3 FT. DEPTH 10 FT. DEPTH

4 FT. DEPTH

5 FT. DEPTH

TYPE 3 SOIL WITH MERCURY CONCENTRATION >10 MG/KG = 7,130 CUBIC YARDS TYPE 3 SOIL WITH MERCURY CONCENTRATION <10 MG/KG = 20,165 CUBIC YARDS TYPE 2 SOIL = 6,980 CUBIC YARDS

SOIL WITH INTERMIXED DEBRIS POOL AREA = 2,000 CUBIC YARDS SOIL WITH INTERMIXED DEBRIS MAINTENANCE AREA = 4,000 CUBIC YARDS

Project No: B1903316.00

Drawing No: B1903316-00G BJB

Drawn By: Date Drawn: 8/25/21 Checked By: Last Modified: 5/2/22

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Contaminated **Soil Excavation** Areas

SCALE: 1" = 150'

TYPE 2 SOIL EXCAVATION AREAS

O.5 FT. DEPTH

0.5 to 1 FT. DEPTH

3 FT. DEPTH

2 FT. DEPTH

4 FT. DEPTH

10 FT. DEPTH

5 FT. DEPTH

SOIL EXCAVATION VOLUMES

TYPE 3 SOIL WITH MERCURY CONCENTRATION >10 MG/KG = 7,130 CUBIC YARDS TYPE 3 SOIL WITH MERCURY CONCENTRATION <10 MG/KG = 20,165 CUBIC YARDS TYPE 2 SOIL = 6,980 CUBIC YARDS

SOIL WITH INTERMIXED DEBRIS POOL AREA = 2,000 CUBIC YARDS SOIL WITH INTERMIXED DEBRIS MAINTENANCE AREA = 4,000 CUBIC YARDS

INTERTEC
The Science You Still On.

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00H

Drawn By: BJB
Date Drawn: 5/23/19
Checked By: MK
Last Modified: 8/30/22

Project Informatio

Hillcrest Redevelopment Site

> 2200 Larpenteur Avenue E

Saint Paul, Minnesota

Site Plan

TYPE 2 SOILS ARE RESTRICTED TO REUSE ONSITE ONLY WITHIN THE ROADS, IN THE AREAS ZONED AS INDUSTRIAL, OR COMMERCIAL USE.

150' 0 300' SCALE: 1" = 300'

Figure 11

Drawing Information

Project No: B1903316.00

Drawing No: B1903316-00A

Drawn By: BJB
Date Drawn: 5/23/19
Checked By: MK
Last Modified: 2/28/22

Project Information

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Well Locations

MONITORING WELL LOCATION

WELL LOCATION

150' 0 300' SCALE: 1" = 300'

Project No: B1903316.00

Drawing No: B1903316-00F

Drawn By: BJB Date Drawn: Checked By: Last Modified: 2/28/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Demolition Project Extent -

heet: 1 of 2

DEMOLITION AREAS

300' SCALE: 1" = 300'

Overview

DETAIL AREA B

13

DETAIL AREA C

HILLCREST BUILDINGS

NUMBER, SECRIPTION, SQ. FT.

1, CLUB HOUSE, 14353

2 2, CLUB HOUSE PARKING LOT GARAGE, 411

3, CADDY SHACK, 738

4, CADDY GARAGE A, 1232

5, CADDY GARAGE B, 1563

6, POOL PUMP ROOM / BAR, 1168

7 7, POOL, 6440

8 8, IRRIGATION PUMP SHACK, 190

9 9, MAIN MAINTENANCE SHED, 4770

10 10, MCKNIGHT GARAGE A, 2641

11, MCKNIGHT GARAGE B, 665

12, CHEMICAL SHED, 161

13 13, GAZEBO, 132

BRAUN INTERTEC

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Project Information

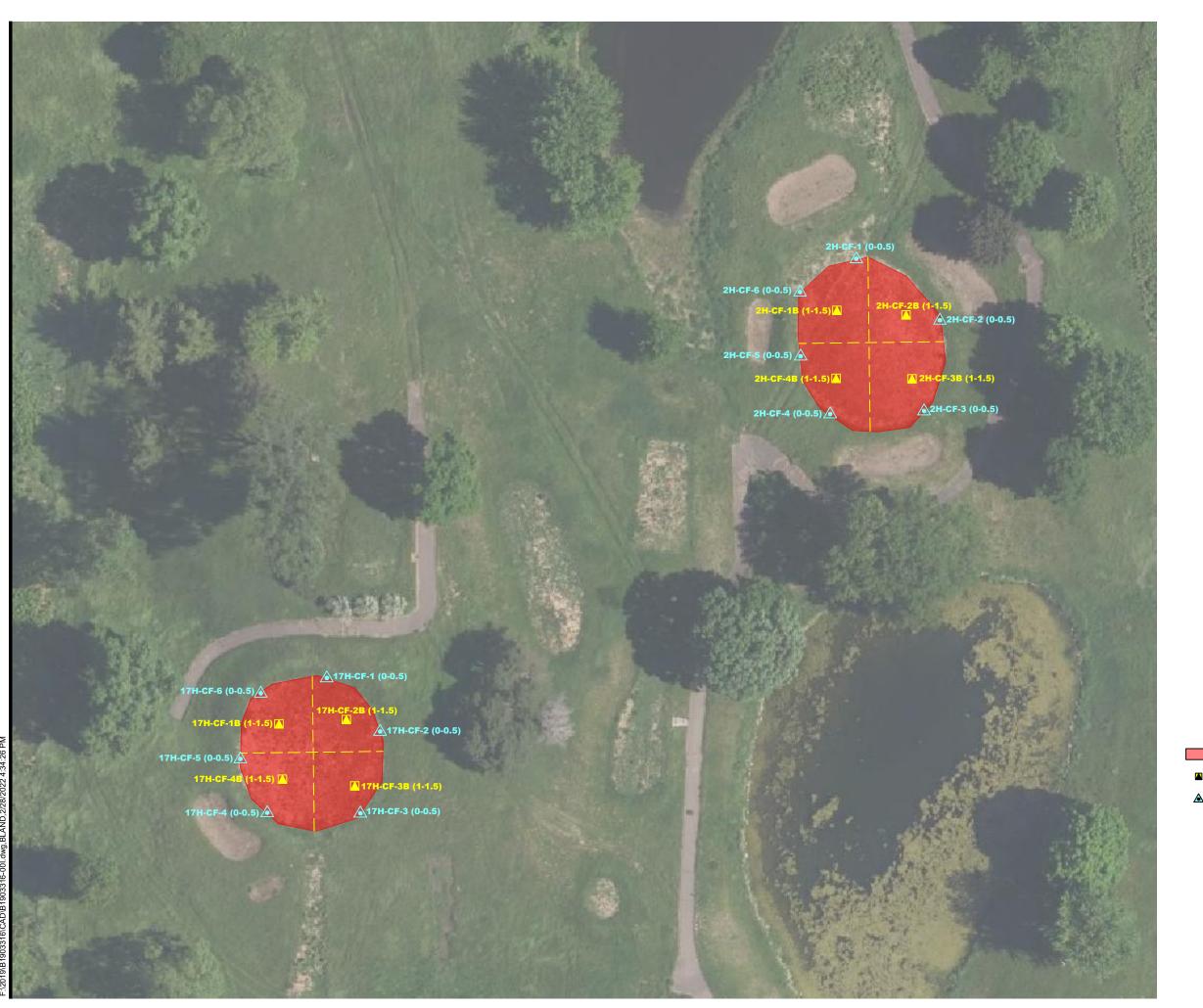
2/28/22

Hillcrest Redevelopment Site

Last Modified:

2200 Larpenteur Avenue E

Saint Paul, Minnesota


Demolition Project Extent -Detail Areas

Sheet: 2 of 2

SCALE: 1" = 80'

DETAIL AREA A

13

Project No: B1903316.00

Checked By: Last Modified: 2/28/22

Drawn By:

Date Drawn:

Drawing No: B1903316-00I

BJB

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

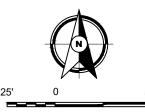

Proposed Confirmation Sampling Plan, **Typical Approach**

Figure 14

REMEDIAL EXCAVATION AREAS

BASE SAMPLE LOCATION

SIDEWALL SAMPLE LOCATION

SCALE: 1" = 50'

O.5 FT. DEPTH

0.5 to 1 FT. DEPTH

2 FT. DEPTH

3 FT. DEPTH

4 FT. DEPTH

5 FT. DEPTH

10 FT. DEPTH

INTERTEC

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000

Project No: B1903316.00

Drawing No: B1903316-00G

Drawn By: BJB Date Drawn: 8/25/21 Checked By: Last Modified: 8/30/22

Hillcrest Redevelopment

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Contaminated **Soil Excavation** Areas -Development Plan

150'

Tables

Table 1 - Fairways, Greens, Roughs, and Tee Boxes **Soil Analytical Results Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

	Com	pound/Parameter			Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
CAS No.					7440-38-2	7439-97-6
	SS-1B (0-0.5)	6/7/2020			117	38.2
	SS-1BN (0-0.5)	11/15/2021	8th Hole	Green	5.5	4.7
	DUP-10 [SS-1BN (0-0.5)]	11/15/2021			5.3	
	SS-1B (1-1.5)	6/7/2020			29.1	11.6
	SS-1B (2-2.5)	11/16/2021			2.5	13.0
	SS-1BN (1-1.5) SS-1C (0-0.5)	11/15/2021 6/7/2020			3.2	3.6 ^[M1]
	SS-1C (0-0.5)	6/7/2020		Rough adjacent to Green	3.7	0.057
	SS-1D (0-0.5)	6/7/2020	9th Hole			0.039
	SS-1D (1-1.5)	6/7/2020		Rough near Sidewalk		0.028
	SS-1E (0-0.5)	6/7/2020		Tee Box		3.9
	SS-1E (1-1.5)	6/7/2020				0.11
	SS-1F (0-0.5)	6/7/2020			7.4	6.6
	SS-1F (1-1.5)	6/7/2020	8th Hole	Rough near Sidewalk	2.9	0.057
	SS-1FN (0-0.5) SS-1FE (0-0.5)	11/16/2021 11/16/2021				0.84
	SS-1FS (0-0.5)	11/16/2021				0.026
	SS-1FW (0-0.5)	11/16/2021				16.1
	SS-1G (0-0.5)	6/7/2020				<0.022
	SS-1G (1-1.5)	6/7/2020		Sand Trap		0.028
	SS-1H (0-0.5)	6/7/2020		Rough adjacent to Sand Trap		0.13
	SS-1H (1-1.5)	6/7/2020		Fairway		<0.021
	SS-11 (0-0.5)	6/7/2020				6.7 ^[M6]
	SS-11 (1-1.5)	6/7/2020				0.2
-	SS-1IN (0-0.5) SS-1IE (0-0.5)	11/16/2021 11/16/2021				7.1
	SS-1IE (0-0.5)	11/16/2021				4.6 ^[P6]
	SS-1IW (0-0.5)	11/16/2021				4.4
	SS-1J (0-0.5)	6/7/2020	9th Hole	Too Poy		5.1
scription	SS-1J (1-1.5)	6/7/2020		Tee Box		0.087
	SS-1K (0-0.5)	6/7/2020		Rough adjacent to Tee Box		1.1
	SS-1K (1-1.5)	6/7/2020				0.1
	SS-3G (0-0.5)	6/9/2020	13th Hole	Sand Trap		0.15 <0.022
	SS-3G (1-1.5) SS-3H (0-0.5)	6/9/2020 6/9/2020				130
Sample Identifier, Date Collected, and Location Description	SS-3H (1-1.5)	6/9/2020		Fringe of Green		1.8
	SS-3I (0-0.5)	6/9/2020				0.92
	SS-3I (1-1.5)	6/9/2020		Rough adjacent to Green		0.051
	SS-3J (0-0.5)	6/9/2020		Fairway		4.0
	SS-3J (1-1.5)	6/9/2020				0.14
	SS-3 J N (0-0.5)	11/17/2021				2.5
	SS-3 J E (0-0.5)	11/17/2021				3.8
	SS-3 J S (0-0.5) SS-3 J W (0-0.5)	11/17/2021 11/17/2021				3.9
	SS-3K (0-0.5)	6/9/2020				0.9
	SS-3K (1-1.5)	6/9/2020		Rough		0.1
	SS-3L (0-0.5)	6/9/2020		Rough		1.4
	SS-3L (1-1.5)	6/9/2020		Rough		0.054
	SS-3M (0-0.5)	6/9/2020		Fairway		1.5
	Dup-4-06092020 (SS-3M (0-0.5)	6/9/2020				1.2
	SS-3M (1-1.5)	6/9/2020				0.043
	SS-4B (0-0.5)	6/11/2020	4th Hole	Fringe of Green Rough		46.0
	SS-4B (1-1.5)	6/11/2020				0.27
	SS-4C (0-0.5)	6/11/2020				2.5 ^[M1]
	Dup-11-06112020 (SS-4C 0-0.5)	6/11/2020				2.1
	SS-4C (1-1.5)	6/11/2020				0.24
	SS-4D (0-0.5)	6/11/2020		Fringe of Fairway		3.6
	SS-4D (1-1.5)	6/11/2020				0.046
	SS-4E (0-0.5)	6/11/2020		Fairway		3.4
	SS-4E (1-1.5) SS-4F (0-0.5)	6/11/2020 6/11/2020				0.12
	SS-4F (0-0.5)	6/11/2020		Fringe of Fairway		<0.023
	SS-5D (0-0.5)	6/12/2020				5.6
	SS-5D (1-1.5)	6/12/2020		Fairway		0.035
	SS-5E (0-0.5)	6/12/2020		Fairway		2.3
	SS-5E (1-1.5)	6/12/2020		Fairway		0.053
	SS-5F (0-0.5)	6/12/2020				1.9
	Dup-13-06122020 (SS-5F (0-0.5)	6/12/2020		Rough Fringe of Green		2.0
	SS-5F (1-1.5)	6/12/2020				<0.019
	SS-5G (0-0.5)	6/12/2020				33.5
	SS-5G (1-1.5)	6/12/2020		ge or oreen		0.066
	SS-5H (0-0.5)	6/12/2020		Sand Trap		<0.021
-	SS-5H (1-1.5)	6/12/2020				0.025
\vdash	SS-5I (0-0.5)	6/12/2020		Rough -		0.11
	SS-5I (1-1.5) Residential S	6/12/2020 Soil Reference Value (S	I RV)	1		0.11
		(mg/kg)			9	2.7
	Commercial/Industrial Soil Reference Value (SRV) (mg/kg)					3.1
		(mg/kg)		i.		

- Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

 mg/kg = Milligrams per kilogram.

 --- Not detected at or above the laboratory reporting limit indicated.

 ---- Not analyzed or calculated for this parameter or not applicable.

 [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

 [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

 [P6] Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level. [R1] RPD value was outside control limits.

	Con	npound/Parameter			Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		CAS No.			7440-38-2	7439-97-6
	SS-5J (0-0.5)	6/12/2020				5.5
	SS-5J (1-1.5)	6/12/2020		Tee Box		2.8
	SS-5K (0-0.5)	6/12/2020				0.055 ^[M1]
	Dup-14-06122020 (SS-5K (0-0.5)	6/12/2020		Tee Box		0.053
	SS-5K (1-1.5)	6/12/2020	6th Hole			0.24
	SS-5L (0-0.5)	6/12/2020		Rough		0.16
	SS-5L (1-1.5)	6/12/2020				<0.022
	SS-5M (0-0.5)	6/12/2020		Drainage Area adjacent to Tee Box		0.13
	SS-5M (1-1.5) SS-10B (0-0.5)	6/12/2020 6/9/2020		100 2011		0.3 3.7
	SS-10B (1-1.5)	6/9/2020		Fairway		0.04
	SS-10C (0-0.5)	6/9/2020	13th Hole	Fringe of Fairway		1.7
	SS-10C (1-1.5)	6/9/2020	130111016	Tringe of Fail way		<0.023
	SS-10D (0-0.5)	6/9/2020		Rough		0.87
	SS-10D (1-1.5) SS-10E (0-0.5)	6/9/2020 6/9/2020				0.071
	SS-10E (0-0.5)	6/9/2020		Rough		<0.022
	SS-10F (0-0.5)	6/9/2020				2.3
	SS-10F (1-1.5)	6/9/2020		Fringe of Fairway		0.22
	Dup-5-06092020 (SS-10E (1-1 E)	6/9/2020	10th Hole			0.61
-	(SS-10F (1-1.5) SS-10G (0-0.5)	6/9/2020	1			2.8
	SS-10G (1-1.5)	6/9/2020		Fairway		0.57
	SS-10H (0-0.5)	6/9/2020	_	Fairway		3.5
	SS-10H (1-1.5)	6/9/2020		,		<0.023
	SS-13B (0-0.5)	6/9/2020		Fairway		3.0 0.08
	SS-13B (1-1.5) SS-13C (0-0.5)	6/9/2020 6/9/2020	13th Hole			<0.023
	SS-13C (1-1.5)	6/9/2020		Rough		0.087
	SS-14B (0-0.5)	6/9/2020		Fairmen		4.0
tion	SS-14B (1-1.5)	6/9/2020		Fairway		0.14
Date Collected, and Location Description	SS-14C (0-0.5)	6/9/2020	11th Hole	Fringe of Fairway		1.7
ь Б	SS-14C (1-1.5)	6/9/2020				0.2
ocati	SS-14D (0-0.5) SS-14D (1-1.5)	6/9/2020 6/9/2020		Rough		0.093 < 0.024
and	SS-16B (0-0.5)	6/11/2020				1.1
cted,	SS-16B (1-1.5)	6/11/2020		Fairway		0.2
9 8	SS-16C (0-0.5)	6/11/2020	5th Hole	Fringe of Fairway		1.2
Date	SS-16C (1-1.5)	6/11/2020		g,		<0.023
ifier,	SS-16D (0-0.5)	6/11/2020		Rough		1.2
Iden I	SS-16D (1-1.5) SS-17 (0-0.5)	6/11/2020 6/10/2020				0.13
Sample Identifier	SS-17 (1-1.5)	6/10/2020				10.0
ss	SS-17 (2-2.5)	11/17/2021				0.035
	SS-17 N (0-0.5)	11/17/2021		Rough next to sand trap		0.52
	SS-17 N (1-1.5)	11/17/2021	4615.11.15			1.3
	SS-17 S (0-0.5)	11/17/2021	16th Hole			0.3
	SS-17 S (1-1.5) SS-17B (0-0.5)	6/10/2020				1.6 0.05
	SS-17B (1-1.5)	6/10/2020		Sand Trap		0.023
	SS-17C (0-0.5)	6/10/2020		Rough		0.088
	SS-17C (1-1.5)	6/10/2020		Rough		0.041
	SS-17D (0-0.5)	6/10/2020	4	Rough		0.39
-	SS-17D (1-1.5)	6/10/2020	4			0.028
	SS-17E (0-0.5) SS-17E (1-1.5)	6/10/2020 6/10/2020	15th Hole	Fairway		2.4 0.022
-	SS-17F (0-0.5)	6/10/2020	1			0.16
	SS-17F (1-1.5)	6/10/2020		Rough		<0.023
	SS-17G (0-0.5)	6/10/2020				16.5
	SS-17G (1-1.5)	6/10/2020	1			0.21
-	SS-17G N (0-0.5)	11/17/2021	-	Fairway		0.77
-	SS-17G E (0-0.5) SS-17G S (0-0.5)	11/17/2021 11/17/2021	1			1.3
	SS-17G W (0-0.5)	11/17/2021	1			0.098
	SS-17H (0-0.5)	6/10/2020				1.0
	SS-17H (1-1.5)	6/10/2020	12th Hole			0.12
	Dup-9-06102020 (SS-17H (1-1.5)	6/10/2020		Rough near Sidewalk		0.12
	SS-17I (0-0.5)	6/10/2020		- Jonata Statewark		3.3
			1			
	SS-17I (1-1.5)	6/10/2020	1			0.56
	SS-17J (0-0.5)	6/10/2020				3.8
	SS-17J (1-1.5)	6/10/2020				0.16
			D) ()	j		2.7
	Residential	Soil Reference Value (S	KV)			
		(mg/kg)			9	
	Commercial/Indu		lue (SRV)		9	3.1

Notes
Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

--- Not analyzed or calculated for this parameter or not applicable.

[a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

	Con	npound/Parameter			Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		CAS No.			7440-38-2	7439-97-6
	SS-18 (0-0.5)	6/7/2020		Rough		0.48
	SS-18 (1-1.5)	6/7/2020	_	Nough		0.054
	SS-18B (0-0.5)	6/7/2020		Fringe of Fairway		3.1
	SS-18B (1-1.5)	6/7/2020				2.7
	SS-18C (0-0.5) Dup-1-06072020	6/7/2020				4.1
	(SS-18C (0-0.5)	6/7/2020	1st Hole	Fairway		0.85
	SS-18C (1-1.5)	6/7/2020				0.11
	SS-18D (0-0.5)	6/7/2020		Fringe of Fairway		0.8
	SS-18D (1-1.5)	6/7/2020				0.042
	SS-18E (0-0.5) SS-18E (1-1.5)	6/7/2020 6/7/2020		Rough		0.13 <0.021
	SS-19 (0-0.5)	6/10/2020				1.1
	SS-19 (1-1.5)	6/10/2020		Rough adjacent to Fairway		0.12
	SS-19B (0-0.5)	6/10/2020				3.1
	SS-19B (1-1.5)	6/10/2020				0.65
	SS-19BN (0-0.5)	11/16/2021		Rough adjacent to Fairway		2.9
	SS-19BE (0-0.5)	11/16/2021		_		2.3
	SS-19BS (0-0.5) SS-19C (0-0.5)	11/16/2021 6/10/2020				3.0
	SS-19C (1-1.5)	6/10/2020	3rd Hole	Fairway		0.3
	SS-19D (0-0.5)	6/10/2020				2.0
	SS-19D (1-1.5)	6/10/2020		Fairway		0.092
	SS-19E (0-0.5)	6/10/2020		Fringe of Fairway		0.67
<u> </u>	SS-19E (1-1.5)	6/10/2020	_	J		<0.021
	SS-19F (0-0.5) Dup-8-06102020	6/10/2020	4			0.35
	(SS-19F (0-0.5)	6/10/2020		Rough		0.35
	SS-19F (1-1.5)	6/10/2020				0.047
	SS-20 (0-0.5)	6/9/2020		Tee Box		0.021
	SS-20 (1-1.5) SS-20B (0-0.5)	6/9/2020 6/9/2020				0.07
	Dup-3-06092020			Davish adiacount to Tax Bay		
	(SS-20B (0-0.5)	6/9/2020	14th Hole	Rough adjacent to Tee Box		0.26
e –	SS-20B (1-1.5)	6/9/2020	- 111111010			0.11
ed, and Location Description	SS-20C (0-0.5) SS-20C (1-1.5)	6/9/2020 6/9/2020		Tee Box		0.023
- P	SS-20D (0-0.5)	6/9/2020				2.8
ocatio	SS-20D (1-1.5)	6/9/2020		Rough adjacent to Tee Box		0.068 ^[M1]
ug Fc	SS-21 (0-0.5)	6/11/2020		Fairway		4.5
ted, a	SS-21 (1-1.5)	6/11/2020	15th Hole			0.031
olled Olled	SS-21B (0-0.5)	6/11/2020		Rough		0.1
ate C	SS-21B (1-1.5)	6/11/2020				<0.023 0.6
Sample Identifier, Date Collect	SS-21C (0-0.5) ^[a] SS-21C (1-1.5) ^[a]	6/11/2020 6/11/2020		Tee Box		0.062
lentif	SS-21D (0-0.5)	6/11/2020				0.53
ol eld	Dup-10-06112020	6/11/2020		Tee Box		0.54
Sam	(SS-21D (0-0.5) SS-21D (1-1.5)	6/11/2020		-		0.19
	SS-21E (0-0.5)	6/11/2020	16th Hole			0.047
	SS-21E (1-1.5)	6/11/2020		Tee Box		<0.022
	SS-21F (0-0.5)	6/11/2020		Tee Box		0.82
	SS-21F (1-1.5)	6/11/2020		TEE BOX		0.25
	SS-21G (0-0.5)	6/11/2020		Rough adjacent to Tee Box		0.56
	SS-21G (1-1.5)	6/11/2020				0.051
\vdash	SS-22 (0-0.5)	6/9/2020	-	Rough adjacent to Tee Box		1.4
	SS-22 (1-1.5)	6/9/2020				0.038
<u> </u>	SS-22B (0-0.5)	6/9/2020	4			16.9
	Dup-6-06092020 (SS-22B (0-0.5)	6/9/2020				25.0
	SS-22B (1-1.5)	6/9/2020	-]		109
<u> </u>	SS-22B N (0-0.5)	11/17/2021	-			0.19 [M1] 0.028
-	SS-22B N (1-1.5) SS-22B N (2-2.5)	11/17/2021	11th Hole			0.028
	SS-22B N (2-2.5)	11/17/2021	110111016	Tee Box		0.028
	SS-22B S (0-0.5)	11/17/2021	1	<u> </u>		2.2
	SS-22B E (1-1.5)	11/17/2021				0.049
	SS-22B S (1-1.5)	11/17/2021				0.097
<u> </u>	SS-22C (0-0.5)	6/9/2020	4			4.5
\vdash	SS-22C (1-1.5)	6/9/2020	-	 		0.22
-	SS-22D (0-0.5) SS-22D (1-1.5)	6/9/2020 6/9/2020	+	Rough		0.077
<u> </u>	SS-22E (0-0.5)	6/9/2020				2.2
	SS-22E (1-1.5)	6/9/2020	1	Rough Adjacent to Fairway		0.15
	SS-22F (0-0.5)	6/9/2020		Fairway		3.0
	SS-22F (1-1.5)	6/9/2020		i un way		0.072
<u> </u>	SS-22G (0-0.5)	6/9/2020	13th Hole	Fairway		4.7
<u> </u>	SS-22G (1-1.5)	6/9/2020	-	1		0.073
<u> </u>	SS-22H (0-0.5) SS-22H (1-1.5)	6/9/2020 6/9/2020	-	Fringe of Fairway		0.08
<u> </u>	SS-22H (1-1.5) SS-22I (0-0.5)	6/9/2020	1	+		0.08
	SS-22I (1-1.5)	6/9/2020	1	Rough		<0.023
		Soil Reference Value (Si	RV)		9	2.7
		(mg/kg)	I (CDV)			
	Commercial/Indu	ustrial Soil Reference Va	iue (SRV)		9	3.1

- Notes

 Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

 mg/kg = Milligrams per kilogram.

 < = Not detected at or above the laboratory reporting limit indicated.

 --- = Not analyzed or calculated for this parameter or not applicable.

 [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

 [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

	Con	npound/Parameter			Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		CAS No.			7440-38-2	7439-97-6
	SS-23 (0-0.5)	6/10/2020		6,,,,		44.1 ^[M6]
	SS-23 (1-1.5)	6/10/2020		Green		0.04
	SS-23B (0-0.5)	6/10/2020				0.029
	SS-23B (1-1.5)	6/10/2020	2nd Hole	Sand Trap		0.025
		6/10/2020				
	SS-23C (0-0.5)			Rough		1.3
	SS-23C (1-1.5)	6/10/2020				0.086
	SS-23D (0-0.5)	6/10/2020		Rough adjacent to Tee Box		2.3
	SS-23D (1-1.5)	6/10/2020		,		0.091
	SS-23E (0-0.5)	6/10/2020				4.8
	SS-23E (1-1.5)	6/10/2020		Tee Box		1.0
	SS-23F (0-0.5)	6/10/2020				0.042
	SS-23F (1-1.5)	6/10/2020	3rd Hole	Tee Box		0.035
	SS-23G (0-0.5)	6/10/2020		Tee Box		8.0
	SS-23G (1-1.5)	6/10/2020				0.11
	SS-23H (0-0.5)	6/10/2020		Rough		0.33
	SS-23H (1-1.5)	6/10/2020				<0.022
	SS-23I (0-0.5)	6/10/2020		Rough		1.4
	SS-23I (1-1.5) SS-23J (0-0.5)	6/10/2020 6/10/2020				0.042
	SS-23J (1-1.5)	6/10/2020	17th Hole	Fairway		0.39
	SS-23K (0-0.5)	6/10/2020		Fairway		1.4
	SS-23K (1-1.5)	6/10/2020		· ana,		0.029
	SS-24 (0-0.5) SS-24 (1-1.5)	6/12/2020 6/12/2020		Tee Box		0.023 <0.022
	SS-24B (0-0.5)	6/12/2020				<0.021
<u> </u>	SS-24B (1-1.5)	6/12/2020		Practice Green		<0.021
ed, and Location Description	SS-24C (0-0.5)	6/12/2020		Fairway		0.033
Desc	SS-24C (1-1.5)	6/12/2020				<0.020
cation	SS-24D (0-0.5) SS-24D (1-1.5)	6/12/2020 6/12/2020	Driving Range	Tee Box		<0.022 <0.020
od Lo	SS-24E (0-0.5)	6/12/2020		Fairmen		0.25
ted, a	SS-24E (1-1.5)	6/12/2020		Fairway		<0.021
Solled .	SS-24F (0-0.5) Dup-15-06122020	6/12/2020				0.024
Date ((SS-24F (0-0.5)	6/12/2020		Fairway		<0.023
ffer, I	SS-24F (1-1.5)	6/12/2020				<0.021
Ident	SS-25 (0-0.5) SS-25 (1-1.5)	6/7/2020 6/7/2020	1st Hole	Green		63.9 1.6
Sample Identifier, Date Collect	SS-26 (0-0.5)	6/10/2020	2-411-1-	Cross		1.7
Sa	SS-26 (1-1.5)	6/10/2020	3rd Hole	Green		0.64 ^[M1]
	SS-27 (0-0.5)	6/11/2020	6th Hole	Green		3.0
	SS-27 (1-1.5) SS-28 (0-0.5)	6/11/2020 6/7/2020				0.18 110 ^[M6]
	SS-28 (1-1.5)	6/7/2020	9th Hole	Green		0.22
	SS-29 (0-0.5)	6/9/2020	10th Hole	Green		79.8
	SS-29 (1-1.5)	6/9/2020				0.33
	SS-30 (0-0.5) SS-30 (1-1.5)	6/10/2020 6/10/2020	11th Hole	Green		1.3 0.032
	SS-31 (0-0.5)	6/10/2020	12+b ⊔o!-	Green		1.4
	SS-31 (1-1.5)	6/10/2020	12th Hole	Green		1.6
	SS-32 (0-0.5)	6/9/2020	14th Hole	Green		40.9
	SS-32 (1-1.5) SS-33 (0-0.5)	6/9/2020 6/11/2020				<0.022 73.0
	SS-33 (1-1.5)	6/11/2020	15th Hole	Green		0.085
	SS-34 (0-0.5)	6/10/2020	16th Hole	Green		3.1
-	SS-34 (1-1.5)	6/10/2020				0.15
-	SS-35 (0-0.5) Dup-7-06092020	6/10/2020	17th Hole	Green		23.4 ^[M6]
	(SS-35 (0-0.5)	6/10/2020	1/11/11/10/10	Green		20.5
	SS-35 (1-1.5) SS-36 (0-0.5)	6/10/2020 6/15/2020				0.086 2.0
	SS-36 (1-1.5)	6/15/2020	18th Hole	Green		0.1
	SS-37 (0-0.5)	6/11/2020	Practice	Green by Club House		2.0
-	SS-37 (1-1.5) SS-38 (0-0.5)	6/11/2020 6/7/2020		<u> </u>		0.089
	SS-38 (1-1.5)	6/7/2020	2nd Hole	Tee Box		0.05
	SS-39 (0-0.5)	6/10/2020	4th Hole	Tee Box		4.4
	SS-39 (1-1.5)	6/10/2020	.a.r.sic			<0.023
	SS-40 (0-0.5) SS-40 (1-1.5)	6/11/2020 6/11/2020	7th Hole	Tee Box		0.4
	SS-41 (0-0.5)	6/7/2020				6.4
	Dup-2-06072020	6/7/2020	8th Hole	Tee Box		4.6
	(SS-41 (0-0.5)) SS-41 (1-1.5)	6/7/2020	1			1.6
•		Soil Reference Value (Si (mg/kg)	RV)	•	9	2.7
			(CD) ()			
	Commerical/Indu	strial Soil Reference Va (mg/kg)	iue (SKV)		9	3.1

Notes
Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

--- = Not analyzed or calculated for this parameter or not applicable.

[a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

	Con	npound/Parameter			Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
		CAS No.			7440-38-2	7439-97-6
	SS-42 (0-0.5)	6/10/2020				0.11
	SS-42 (1-1.5)	6/10/2020				7.2
	SS-42 (2-2.5)	11/17/2021				1.3 ^[M1]
	SS-42 N (0-0.5)	11/17/2021	12th Hole	Tee Box		0.11
	SS-42 N (1-1.5)	11/17/2021				5.1
	SS-42 S (0-0.5)	11/17/2021				0.37
	SS-42 S (1-1.5)	11/17/2021				0.66
uo	SS-43 (0-0.5)	6/9/2020	4201-11-1-			2.7
ripti	SS-43 (1-1.5)	6/9/2020	13th Hole	Tee Box		0.16
Desc	SS-44 (0-0.5)	6/10/2020				11.7
Sample Identifier, Date Collected, and Location Description	SS-44 (1-1.5)	6/10/2020	15th Hole	Tee Box		0.13
	SS-45 (0-0.5)	6/10/2020				0.069
and	SS-45 (1-1.5)	6/10/2020	17th Hole	Tee Box		0.028
ted,	SS-46 (0-0.5)	6/10/2020		T D .		1.3
olle:	SS-46 (1-1.5)	6/10/2020	400.00	Tee Box		0.043
ate	SS-47 (0-0.5)	6/10/2020	18th Hole	Too Dov		0.054
e, D	SS-47 (1-1.5)	6/10/2020		Tee Box		0.025
ntifi	SS-48 (0-0.5)	6/7/2020				8.2
e Ide	SS-48 (1-1.5)	6/7/2020	2nd Hole	Fairway		0.073
due	SS-48N (0-0.5)	11/16/2021	2nd note	Fallway		4.7
Sa	SS-48S (0-0.5)	11/16/2021				3.7
	SS-49 (0-0.5)	6/15/2020	5th Hole	Rough		0.96
	SS-49 (1-1.5)	6/15/2020	Stirrioic	Rough		<0.022 [M1]
	SS-50 (0-0.5)	6/7/2020	7th Hole	Fairway		3.5
	SS-50 (1-1.5)	6/7/2020	7.1111010	ranway		0.047
	SS-51 (0-0.5)	6/10/2020	16th Hole	Rough adjacent to Fairway		2.8
	SS-51 (1-1.5)	6/10/2020		nough adjacent to rail way		0.21
		ntional Soil Reference V (mg/kg)			9	2.7
		strial Soil Reference Va	• •		9	3.1
	Screening	Soil Leaching Value (SL)	V)		5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

--- = Not analyzed or calculated for this parameter or not applicable.

[a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Commercial/Industrial SRV

Soil Analytical Results: Wetlands, Ponds and Associated Areas **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Compour	nd/Parameter		Mercury, Total (mg/kg)
		c	AS No.		7439-97-6
	Sed-1	07/02/2020		Center of Pond Adjacent to 9th Hole	1.5 ^[M1]
	SED 1A (0-0.5)	07/15/2020		Southeast slope	0.23
	PW-1A (0-0.5)	08/12/2020		West slope	0.41
	PW-1B (0-0.5)	08/12/2020			2.8
	PW-1C (0-0.5)	08/12/2020		Southeast slope	0.31
_	PW-1D (0-0.5)	08/12/2020		·	0.54
_	PW-1E (0-0.5)	08/12/2020			0.94
<u> </u>	PW-1F (0-0.5)	08/12/2020	9th Hole		26.3
_	PW-IF (1-1.5)	11/16/2021		South of pond	0.063
_	PW-IFE (0-0.5)	11/16/2021			0.7
_	PW-IFS (0-0.5)	11/16/2021			1.2
-	PW-1G (0-0.5)	08/12/2020			0.076
-	PW-1G (1-1.5)	11/16/2021		Southwest of pond	
-	PW-1GN (0-0.5) PW-1GW (0-0.5)	11/16/2021 11/16/2021		Southwest of pond	8.8
-	PW-1H (0-0.5)	08/12/2020			0.83
-	Sed-2	07/02/2020		Center	0.21
-	SED 2A (0-0.5)	07/15/2020			0.59
F	Sed-2A (1-1.5)	08/12/2020		Southwest slope	0.42
	PW-2A (0-0.5)	08/12/2020		East slope	0.73
	PW-2B (0-0.5)	08/12/2020		East of pond	0.16
	PW-2C (0-0.5)	08/12/2020			0.94
	PW-2D (0-0.5)	08/12/2020	01.11.1	West slope	1.9
_	PW-2E (0-0.5)	08/12/2020	8th Hole	East slope	0.028
iptio	PW-2F (0-0.5)	08/12/2020		Northwest of pand	0.28
Descr	PW-2F (1-1.5)	08/12/2020		Northwest of pond	0.22
ion	PW-2G (0-0.5)	08/12/2020		Southwest of pond	0.13
ocat	PW-2H (0-0.5)	08/12/2020		South of pond	0.2
and I	PW-2I (0-0.5)	08/12/2020		Southwest of pond	0.18
red,	PW-2J (0-0.5)	08/12/2020			0.063
Sample Identifier, Date Collected, and Location Description	Sed-3	07/02/2020		Cantan	0.56
ž Č	Sed-101 (Sed-3)	07/02/2020		Center	0.3
, E	SED 3A (0-0.5)	07/15/2020		North slope	0.044
iţi -	PW-3A (0-0.5)	08/12/2020	2nd Hole	Northwest slope	0.075
i de	PW-3B (0-0.5)	08/12/2020		West of center	0.47
E E	PW-3C (0-0.5)	08/12/2020		Southoast slope	1.1
Sa	PW-3D (0-0.5)	08/12/2020		Southeast slope	0.056
	Sed-4	07/02/2020		Center	0.069
	SED 4A (0-0.5)	07/15/2020			0.16
	SED 4A (1-1.5)	07/15/2020	South of	Southwest slope	0.19
	PW-4A (0-0.5)	08/12/2020	South of 2nd Hole		<0.024
	PW-4B (0-0.5)	08/12/2020		Southeast slope	0.18
	PW-4C (0-0.5)	08/12/2020	1	East slope	0.2
	PW-4D (0-0.5)	08/12/2020			0.046
<u> </u>	Sed-5	07/02/2020	-	Southeast of building	0.1
<u> </u>	PW-5A (0-0.5)	08/12/2020	-		0.14
\vdash	PW-5B (0-0.5)	08/12/2020	-	Northwest of building	0.098
<u> </u>	PW-5C (0-0.5)	08/12/2020	1		0.084
	PW-5D (0-0.5)	08/12/2020	-		0.28
 	PW-5E (0-0.5)	08/12/2020	1		0.071
-	PW-5E (1-1.5)	11/16/2021	Mainten	West of building	0.071
-	PW-5EE (0-0.5) PW-5ES (0-0.5)	11/16/2021	Maintenance Building	west of building	2.9 41.9
 	PW-5ES (0-0.5)	11/16/2021	1		0.27
 	PW-5F (0-0.5)	08/12/2020	†		3.7
-	PW-5F (1-1.5)	11/18/2021	1		6.8
	PW-5F N (0-0.5)	11/18/2021	1		0.29
	PW-5F E (0-0.5)	11/18/2021	1	Southwest of building	2.2
	PW-5F S (0-0.5)	11/18/2021	1		0.66
	PW-5G (0-0.5)	08/12/2020	1		2.5
1		•	Re	esidential/Recreational Soil Reference Value (SRV) (mg/kg)	2.7
				Commercial/Industrial Soil Reference Value (SRV) (mg/kg)	3.1

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< Not detected at or above the laboratory reporting limit indicated.

--- Not analyzed or calculated for this parameter or not applicable.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Commercial/Industrial SRV

Exceeds Commercial/Industrial SRV

Soil Analytical Results: Wetlands, Ponds and Associated Areas **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Compou	nd/Parameter		Mercury, Tota (mg/kg)
		C	AS No.		7439-97-6
	Sed-6	07/02/2020			12.9
	Sed-6 (0-0.5)	7/13/2022			0.29
	Sed-6 (1-1.5)	7/13/2022		Center	<0.027
	Sed-6 E (0-0.5)	7/13/2022		Center	0.069
	Sed-6 S (0-0.5)	7/13/2022			1.6
	Sed-6 W (0-0.5)	7/13/2022			0.56
	PW-6A (0-0.5)	08/12/2020		North slope	1.9
	PW-6B (0-0.5)	08/12/2020		North Stope	2.5
	PW-6C (0-0.5)	08/12/2020			6.4 ^[M6]
	PW-6C (1-1.5)	7/13/2022		Northeast slope	2.9
	PW-6C N (0-0.5)	7/13/2022		Northeast slope	4.0
	PW-6C W (0-0.5)	7/13/2022			2.4
	PW-6D (0-0.5)	08/12/2020	North of		9.3
	PW-6D (1-1.5)	7/13/2022	6th Hole	Northwest slope	0.68
	PW-6D S (0-0.5)	7/13/2022			2.5
	PW-6D W (0-0.5)	7/13/2022			0.24
	PW-6E (0-0.5)	08/12/2020	South slope	1.3	
btio.	PW-6F (0-0.5)	08/12/2020			0.26
escri	PW-6G (0-0.5)	08/12/2020		Southeast slope	0.025
Ğ L	PW-6H (0-0.5)	08/12/2020			0.28
catic	PW-6I (0-0.5)	08/12/2020	_		0.5
뒫	PW-6J (0-0.5)	08/12/2020			0.91
d, ar	PW-6K (0-0.5)	08/12/2020		North of pond	3.4
Sample Identifier, Date Collected, and Location Description	PW-6K (1-1.5)	11/18/2021		·	2.3
<u> </u>	PW-6K N (0-0.5)	11/18/2021			0.27
Dat	PW-6K S (0-0.5)	11/18/2021			1.4
iffer,	PW-6K W (0-0.5)	11/18/2021			0.11
de L	SED-7	07/02/2020		Center	11.7
= _	SED-7 (1-1.5)	11/17/2021			<0.024
Sam	SED 7A (0-0.5)	07/15/2020		Northwest slope	0.12
	SED 7B (0-0.5)	07/15/2020		Northwest of center	11.9
<u> </u>	Sed-7B (1-1.5)	08/12/2020	4		0.045
<u> </u>	SED 7C (0-0.5)	07/15/2020	4	Southeast of center	1.1
-	SED 7C (1-1.5)	07/15/2020	-		0.21
-	SED 7D (0-0.5)	07/15/2020	-	Southeast slope	0.28
-	SED 7D (1-1.5)	07/15/2020	4th Hole		0.16
⊢	SED-7 E (0-0.5)	11/17/2021	-		0.13
-	SED-7 E (1-1.5)	11/17/2021	-		0.055
-	SED-7 F (0-0.5)	11/17/2021	-		0.24
-	SED-7 G (0-0.5)	11/17/2021	-		0.075
-	SED-7 H (0-0.5)	11/17/2021	4	Couthor-t-ft	0.33
-	PW-7A (0-0.5)	08/12/2020	4	Southeast of center	2.4
⊣	PW-7B (0-0.5)	08/12/2020	+	Southeast slope	0.21
-	PW-7C (0-0.5)	08/12/2020	+	Northwest of pond	0.046
-	PW-7D (0-0.5)	08/12/2020	-	Northwest slope	1.6
\vdash	Soil 1-0-0.5	07/15/2020	4th Hole Tee	West slope	0.1
	Soil 1-1-1.5	07/15/2020	box		0.034
			Re	esidential/Recreational Soil Reference Value (SRV) (mg/ Commercial/Industrial Soil Reference Value (SRV) (mg/	

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

— = Not analyzed or calculated for this parameter or not applicable.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Residential/Berreafional SRV

Table 3: Soil Borings Soil Analytical Results Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

				Sai	mple Identifier	and Date Collec	ted					
				Jai	inpie identinier	and Date Conec	Dup-20-					
		SB-1 (0.5-1.5)	SB-2 (0.5-1)	SB-3 (6.5-7)	SB-4 (4"-10")	SB-5 (.5-1.5)	06252020 SB-5 (.5-1.5)	MeOH Trip Blank	MeOH Trip Blank	Residential/Recr eational Soil	Commercial/ Industrial Soil	Screening Soil Leaching Value
Compound/Parameter	CAS No.	06/24/2020	06/24/2020	06/24/2020	06/24/2020	06/25/2020	06/25/2020	06/24/2020	06/24/2020	Reference Value (SRV)	Reference Value (SRV)	(SLV)
		Former UST Basin Leak Site	Former UST Basin Leak Site	Former Diesel	Former	North Park	ing Lot near	Field QAQC Sample - Lab	Field QAQC Sample -Lab	(mg/kg)	(mg/kg)	(mg/kg)
		#5050	#18327	AST	Gasoline AST	clubl	nouse	Report 10522854	Report 10523060			
Volatile Organic Compounds (VOCs) (mg/kg	g)							10322034	10323000			
All reported VOCs		<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<></th></rl<>	<rl< th=""><th><rl< th=""><th></th><th></th><th></th></rl<></th></rl<>	<rl< th=""><th></th><th></th><th></th></rl<>			
Polycyclic Aromatic Hydrocarbons (PAHs) (r	ng/kg)											
Benzo(b)fluoranthene	205-99-2		-	<0.0129 [R1]		0.0144	0.0211			сРАН	сРАН	сРАН
Benzo(a)pyrene	50-32-8		-	<0.0129		<0.0109	0.0119			сРАН	сРАН	сРАН
Benzo(g,h,i)perylene	191-24-2			<0.0129 [R1]		<0.0109	0.0142			NE	NE	NE
Chrysene	218-01-9			<0.0129 [R1]		0.011	0.0159			сРАН	сРАН	сРАН
Fluoranthene	206-44-0			<0.0129		0.0182	0.0218			1,080	6,800	670
Pyrene	129-00-0			<0.0129		0.0171	0.021			890	5,800	440
All other reported PAHs		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
BaP Equivalent ^[a]		0.0	0.0	0.0	0.0	0.002	0.014	0.0	0.0	2	23	1.4
Metals (mg/kg)												
Arsenic, Total	7440-38-2	3.2	2.3			2.4	1.7			9	9	5.8
Barium, Total	7440-39-3	37.7	50.6			45.6 ^[M1]	39.6			1,100	18,000	1,700
Cadmium, Total	7440-43-9	<0.16	0.31			<0.16	<0.15			25	200	8.8
Chromium, Total ^[b]	7440-47-3	16.7	15.5			18.4	19.1			44,000/87 ^[b]	100,000/650 ^[b]	1,000,000,000/36 ^[b]
Lead, Total	7439-92-1	8.1	21.5			4.5	7.0			300	700	2,700
Mercury, Total	7439-97-6	0.94	0.82			<0.020	0.49			2.7	3.1	3.3
Selenium, Total	7782-49-2	<1.1	<1.1			<1.1	<1.0			160	1,300	2.6
Silver, Total	7440-22-4	<0.54	<0.55			<0.53	<0.51			160	1,300	7.9
List 2 Pesticides (mg/kg)												
2,4-D	94-75-7	<0.10								285	2200	NE
2,4-DB	94-82-6	<0.10								226	1750	NE
2,4,5-T	93-76-5	<0.10								290	2150	NE
2,4,5-TP (Silvex)	93-72-1	<0.10								NE	NE	NE
Bentazon	25057-89-0	<0.10								NE	NE	NE
Dicamba	1918-00-9	<0.10								NE	NE	NE
МСРА	94-74-6	<0.10								16	110	NE
Picloram	1918-02-1	<0.10								2000	15000	NE
Triclopyr	55335-06-3	<0.10								NE	NE	NE
Chlorothalonil	1897-45-6	<0.05								NE	NE	NE
Iprodione	36934-19-7	<0.10								NE	NE	NE
Propiconazole	60207-90-1	<0.05								NE	NE	NE
Other Parameters (mg/kg)												
Diesel Range Organics (DRO)		<9.1	<8.9	<9.5	605 ^[T6]					NE ^[c]	NE ^[c]	NE ^[c]
Gasoline Range Organics (GRO)		<10.6	<10.9	<13.3	<10.2 [G+]			<10.0	<10.0	NE ^[c]	NE ^[c]	NE ^[c]
Diisopropyl ether	108-20-3	<0.0558	<0.0541	<0.0646	<0.0516			<0.0500		NE	NE	NE
Nitrogen, Kjeldahl, Total	7727-37-9	124								5,000/1,000*		NE
Nitrogen, NO2 plus NO3	14797-55-8	0.30 ^[N2]								150-200*		NE
Total Solids (%)	TSOLIDS	89.6	92.5	77.4	96.9					NE	NE	NE

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated. --- = Not analyzed or calculated for this parameter or not applicable.

RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.

NE = Regulatory limit not established for this parameter.

cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.

[a] = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; MPCA; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.

[b] = Reported result is total chromium, regulatory limit for chromium III and chromium VI are provided.

[c] = DRO/GRO concentrations greater than 100 mg/kg are not suitable for reuse as unregulated fill per MPCA Guidance Document c-rem1-01 "Best Management Practices for the Off-Site Reuse of Unregulated Fill" (February 2012).

*The MDA preliminary generic soil cleanup goal for nitrate-nitite is 150-200 mg/kg, and for TKN is 5,000 mg/kg for the upper 2.5 feet of soil, and 1,000 mg/kg below 2.5 feet.

[1] The continuing calibration for this analyte exceeded 20% difference acceptance criteria for EPA method. Analyte presence below reporting limits in associated samples. No impact to data.

[G+] Late peaks present outside the GRO window.

[L0] Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

 $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

[N2] The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

[R1] RPD value was outside control limits.

[T6] High boiling point hydrocarbons are present in the sample.

Exceeds Residential/Recreational SRV exceeds Commercial/Industrial SRV xceeds 100 mg/kg for DRO/GRO

Soil Analytical Results - Hand Augers in Club House Area **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

										Sample Id	entifier and Da	te Collected											
		DSS-1 (0-6'')	DSS-1 (1-1.5')	DSS-2 (0-6")	DSS-2 (1-1.5')	DSS-3 (0-6")	DSS-4 (0-6")	DSS-4 (1-1.5')	DSS-5 (0-6'')	DSS-5 (1-1.5')	DSS-6 (0-6'')	DSS-6 (1-1.5')	DSS-7 (0-6")	DSS-7 (1-1.5')	DSS-7E (0-0.5)	DSS-7S (0-0.5)	DSS-7W (0- 0.5)	DSS-8 (0-6'')	DSS-8 (1-1.5')	DSS-102 DSS-8 (1-1.5)	Residential/	Commercial/	Screening Soil
Compound/Parameter	CAS No.	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	11/16/2021	11/16/2021	11/16/2021	07/02/2020	07/02/2020	07/02/2020	Recreational Soil Reference Value	Industrial Soil Reference Value	Leaching Value
Compound/Parameter	CAS NO.		Shed	northwest of clu	ibhouse		Gara	ages west of club	house - North	garage				Gar	ages west of clul	house - South	arage				(SRV)	(SRV)	(SLV)
		North	of shed	Directly nort	Test-southeast of shed shed Directly northeast of garage shed Directly northwest of garage parage Directly northwest of garage parage Directly northwest of garage South of ga										2			East of garage		(mg/kg)	(mg/kg)	(mg/kg)	
Polycyclic Aromatic Hydrocarbons (PAHs	s) (mg/kg)																						
Acenaphthene	83-32-9			< 0.057	0.019		<0.012	<0.012										<0.012	<0.057	0.016	1,200	5,260	81
Acenaphthylene	208-96-8			0.53	0.22		<0.012	<0.012										<0.012	< 0.057	0.029	NE	NE	NE
Anthracene	120-12-7			0.45	0.2		<0.012	<0.012										<0.012	<0.057	0.054	7,880	45,400	1,300
Benz(a)anthracene	56-55-3			1.6	0.71		<0.012	<0.012										0.069	0.15	0.19	сРАН	сРАН	сРАН
Benzo(b)fluoranthene	205-99-2			3.0	1.4		0.012	<0.012										0.12	0.23	0.31	сРАН	сРАН	сРАН
Benzo(k)fluoranthene	207-08-9			0.9	0.49		<0.012	<0.012										0.04	0.083	0.1	cPAH	cPAH	сРАН
Benzo(a)pyrene	50-32-8			2.1	0.87		<0.012	<0.012										0.079	0.14	0.21	сРАН	сРАН	сРАН
Benzo(g,h,i)perylene	191-24-2			1.7	0.71		<0.012	<0.012										0.059	0.12	0.16	NE	NE	NE
Chrysene	218-01-9			1.7	0.9		<0.012	<0.012										0.066	0.15	0.22	cPAH	cPAH	сРАН
Dibenz(a,h)anthracene	53-70-3			0.37	0.16		<0.012	<0.012										0.014	< 0.057	0.041	сРАН	сРАН	сРАН
Fluoranthene	206-44-0			3.6	2.1		0.014	<0.012										0.18	0.3	0.39	1,080	6,800	670
Fluorene	86-73-7			0.1	0.045		<0.012	<0.012										<0.012	< 0.057	0.016	850	4,120	110
Indeno(1,2,3-cd)pyrene	193-39-5			1.4	0.6		<0.012	<0.012										0.046	0.083	0.14	сРАН	сРАН	сРАН
Phenanthrene	85-01-8			1.7	0.84		<0.012	<0.012										0.053	0.12	0.23	NE	NE	NE
Pyrene	129-00-0			3.3	1.6		0.012	<0.012										0.13	0.24	0.34	890	5,800	440
All other reported PAHs		<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
BaP Equivalent ^[a]		0.0	0.0	3.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	2	23	1.4
Metals (mg/kg)			_		_		_			_	_	_	_	_		_	_	_	_				
Arsenic, Total	7440-38-2			2.7	2.7		5.7	5.8										2.6	2.5	3.3	9	9	5.8
Barium, Total	7440-39-3			44.0	51.5		83.3	79.6										70.4	55.6	84.4	1,100	18,000	1,700
Cadmium, Total	7440-43-9			0.42	0.43		<0.17	<0.17										0.2	0.17	0.18	25	200	8.8
Chromium, Total ^[b]	7440-47-3			13.1	14.7		18.4	18.7										14.8	14.3	13.6	44,000/87 ^[b]	100,000/650 ^[b]	1,000,000,000/36 ^{[t}
Lead, Total	7439-92-1			75.2	110		10.1	8.0										11.4	10.2	11.8	300	700	2,700
Mercury, Total	7439-97-6	0.37	0.38	0.38	0.31	0.11	0.08	0.062	0.21	0.06	0.076	0.11	3.3	0.3	0.62	0.095	0.084	0.31	0.3	0.38	2.7	3.1	3.3
Selenium, Total	7782-49-2			<1.1	<1.0		<1.1	<1.1										<1.1	<1.1	<1.1	160	1,300	2.6
Silver, Total	7440-22-4			< 0.57	<0.52		<0.56	<0.56										<0.53	<0.55	< 0.57	160	1,300	7.9

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

--- = Not analyzed or calculated for this parameter or not applicable.

RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.

NE = Regulatory limit not established for this parameter.

cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.

[a] = Benzo(a) pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; MPCA; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.

[b] = Reported result is total chromium, regulatory limit for chromium III and chromium VI are provided.

 $^{[1]}$ [D3] Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Soil Analytical Results - Hand Augers in Club House Area Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

												Sample Identifier	and Date Colle	cted												
		DSS-9 (0-6")	DSS-9 (1-1.5')	DSS-10 (0-6")	DSS-11 (0-6")) DSS-11 (1-1.5') DSS-12 (0-6'')	DSS-13 (0-6")	DSS-13 (1-1.5")	DSS-14 (0-6'')	DSS-14 (1-1.5')	DSS-14N (0-0.5)	DSS-14S (0- 0.5)	DSS-14W (0-0.5)	DSS-15 (0-6'')	DSS-15 (1-1.5')	DSS-16 (0-6")	DSS-101 DSS-16 (0-6")	DSS-16 (1-1.5')	DSS-17 (0-6')	DSS-17 (1-1.5')	DSS-18 (0-6'')	DSS-18 (1-1.5')	Residential/	Commercial/	Screening Soil
Compound/Parameter	CAS No.	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	11/16/2021	11/16/2021	11/16/2021	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	07/02/2020	Recreational Soil Reference Value	Industrial Soil Reference Value	Leaching Value
Compound/Parameter	CAS NO.	North	garage	She	ed west of club	house				Clu	ubhouse				Poo	lhouse			Club	nouse				(SRV)	(SRV)	(SLV)
			00-		1																			(mg/kg)	(mg/kg)	(mg/kg)
		East of	f garage	Directly southwest of shed	Directly sou	itheast of shed	Directly NW of clubhouse	f West of	clubhouse		Sout	h-southwest of cl	ubhouse		Directly sout	h of poolhouse	South	southeast of clu	ıbhouse	East-southeas	st of clubhouse	North-northw	est of clubhouse			
Polycyclic Aromatic Hydrocark	oons (PAHs) (mg	g/kg)																								
Acenaphthene	83-32-9				<0.011	<0.011									<0.011	<0.011				<0.012	<0.011			1,200	5,260	81
Acenaphthylene	208-96-8				<0.011	<0.011									<0.011	<0.011				0.014	<0.011			NE	NE	NE
Anthracene	120-12-7				<0.011	<0.011									<0.011	<0.011				0.033	<0.011			7,880	45,400	1,300
Benz(a)anthracene	56-55-3				0.048	0.032									0.017	0.013				0.17	<0.011			сРАН	сРАН	сРАН
Benzo(b)fluoranthene	205-99-2				0.08	0.056									0.022	<0.011				0.21	<0.011			сРАН	сРАН	сРАН
Benzo(k)fluoranthene	207-08-9				0.035	0.024									0.012	<0.011				0.099	<0.011			сРАН	сРАН	сРАН
Benzo(a)pyrene	50-32-8				0.056	0.041									0.02	<0.011				0.15	<0.011			сРАН	сРАН	сРАН
Benzo(g,h,i)perylene	191-24-2				0.046	0.032									0.013	<0.011				0.11	<0.011			NE	NE	NE
Chrysene	218-01-9				0.056	0.037									0.022	<0.011				0.13	<0.011			сРАН	сРАН	сРАН
Dibenz(a,h)anthracene	53-70-3				<0.011	<0.011									<0.011	<0.011				0.028	<0.011			сРАН	сРАН	сРАН
Fluoranthene	206-44-0				0.12	0.082									0.048	0.022				0.35	<0.011			1,080	6,800	670
Fluorene	86-73-7				<0.011	<0.011									<0.011	<0.011				<0.012	<0.011			850	4,120	110
Indeno(1,2,3-cd)pyrene	193-39-5				0.033	0.025									<0.011	<0.011				0.09	<0.011			сРАН	сРАН	сРАН
Phenanthrene	85-01-8				0.035	0.027									0.027	0.016				0.092	<0.011			NE	NE	NE
Pyrene	129-00-0				0.094	0.061									0.033	0.019				0.26	<0.011			890	5,800	440
All other reported PAHs		<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
BaP Equivalent ^[a]		0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	2	23	1.4
Metals (mg/kg)																										
Arsenic, Total	7440-38-2				2.3	2.3									2.1	2.4				3.6	2.3			9	9	5.8
Barium, Total	7440-39-3				19.9	51.0									47.5	47.3				67.6	46.9			1,100	18,000	1,700
Cadmium, Total	7440-43-9				0.17	<0.16									<0.16	<0.16				0.32	0.38			25	200	8.8
Chromium, Total ^[b]	7440-47-3				5.8	15.2									34.3	17.9				18.0	17.6			44,000/87 ^[b]	100,000/650 ^[b]	1,000,000,000/36 ^[b]
Lead, Total	7439-92-1				9.5	7.4									8.7	6.2				13.7	4.9			300	700	2,700
Mercury, Total	7439-97-6	0.52	0.099	0.16	0.29	0.089	0.042	2.0	1.7	4.1	0.91	0.19	0.8	0.71	0.31	0.24	1.6	1.1	0.11	0.79	0.062	0.62	0.89	2.7	3.1	3.3
Selenium, Total	7782-49-2				<5.1 [1]	<1.1									<1.0	<1.1				<1.2	<1.1			160	1,300	2.6
Silver, Total	7440-22-4				<0.51	< 0.53									< 0.52	< 0.54				<0.58	< 0.54			160	1,300	7.9

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

 ${\mbox{\tt < = }}$ Not detected at or above the laboratory reporting limit indicated.

--- = Not analyzed or calculated for this parameter or not applicable.

RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.

NE = Regulatory limit not established for this parameter.

cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.

[a] = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; MPCA; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.

[b] = Reported result is total chromium, regulatory limit for chromium III and chromium VI are provided.

[1] [D3] Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Exceeds Residential SRV

Table 5: Agricultural Soil Boring Soil Analytical Results Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

												Sampl	e Identifier and Date (Collected										
		ASB-1 (0-0.5)	ASB-1 (2-2.5)	ASB-2 (0-0.5)	ASB-2 (2-2.5)	ASB-3 (0-0.5)	ASB-3 (2-2.5)	ASB-3 (4-4.5)	ASB-4 (0-0.5)	ASB-4 (2-2.5)	ASB-5C (0-0.5)	ASB-5C (2-2.5)	ASB-6c (0-0.5)	ASB-6c (2-2.5)	DUP-17-06222020 ASB-6c (2-2.5)	ASB-7 (0-0.5)	ASB-7 (2-2.5)	ASB-8c (0-0.5)	ASB-8c (2-2.5)	DUP-18-06222020 ASB-8c (2-2.5)	ASB-8c (4-4.5)	ASB-9C (0-0.5)	ASB-9C (2-2.5)	ASB-9C (4-4.5)
		06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/23/2020	06/23/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	06/23/2020	06/23/2020	06/23/2020
Compound/Parameter	CAS No.		Agricultural Chemical S	torage Building (Interio	or)	Ag	gricultural Chemical Sto	rage	Exterior Chemic	al Loading Areas		Agric	ultural Chemical Stora	ige Shed	•				Agric	cultural Chemical Mixing	Area	•		
			-	1		+		-			1													
		Large crack in	floor of west bay	Large crack in	floor of east bay		or asphalt loading area Chemical Storage Buildi		Cracked	d asphalt	Outlet for drain in o	concrete loading pad	Grass area imm	ediately adjacent to co	ncrete loading pad		ele adjacent to mixing rea		Main mi	ixing area			Drainage area	
Volatile Organic Compounds (VOCs) (r	mg/kg)																							
All reported VOCs																								<rl< th=""></rl<>
Metals (mg/kg)																								
Arsenic, Total	7440-38-2		2.4																					
Barium, Total	7440-39-3		57.2																					
Cadmium, Total	7440-43-9		<0.16																					
Chromium, Total ^[a]	7440-47-3		20.4										-		-									
Lead, Total	7439-92-1		5.0																					
Mercury, Total	7439-97-6	0.042	<0.022	0.024	<0.022	0.15	0.048		<0.018	<0.022	<0.023	<0.024	0.21	<0.021	<0.024	0.036	0.048	1.1	0.58	0.14	0.037	0.61	0.78	
Selenium, Total	7782-49-2		<1.1																					
Silver, Total	7440-22-4		<0.54																					
List 2 Pesticides (mg/kg)																								
2,4-D	94-75-7								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
2,4-DB	94-82-6								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
2,4,5-T	93-76-5								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
2,4,5-TP (Silvex)	93-72-1								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Bentazon	25057-89-0								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Dicamba	1918-00-9								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
MCPA	94-74-6								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Picloram	1918-02-1								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Triclopyr	55335-06-3								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Chlorothalonil	1897-45-6								<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	
Iprodione	36934-19-7								<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	
Propiconazole	60207-90-1								<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	
Other Parameters (mg/kg)														_										
Diesel Range Organics (DRO)																								35.0 ^[T6]
Gasoline Range Organics (GRO)																								
Diisopropyl ether	108-20-3																							<0.0531
Nitrogen, Kjeldahl, Total	7727-37-9	351	298	448	355	340	2,640	332								2,060	515	1,370	2,170	807		483	793	
Nitrogen, NO2 plus NO3	14797-55-8	1.1 [N2]	<0.23 ^[N2]	1.7 [N2]	0.38 ^[N2]	1.1 [N2]	0.28 ^[N2]									10.4 [N2]	5.4 ^[N2]	0.97 [N2]	0.31 ^[N2]	0.33 ^[N2]		0.40 [N2]	0.44 ^[N2]	
Total Solids (%)	TSOLIDS																							94.1

- *Ine MUA preimmany generic soil cleanup goal for intrate-intitle is 150-200 mg/kg, and for IRN is 5,000 mg/kg for MIM] Matrix spike encovery exceeded GC limits. Slath accepted based on laboratory control sample (G2) recovery. [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. Sample was received or analysis requested beyond the recognized method holding time.
 [N2] The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may ap [R1] RPD value was outside control limits. fications may apply. A complete list of accreditations/certifications is available upon reques
- [23] [P6] Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Table 5: Agricultural Soil Boring Soil Analytical Results Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

									Sample Ident	ifier and Date Collected	I											
		ASB-10 (2-2.5)	ASB-11C (0-0.5)	ASB-11C (2-2.5)	ASB-12C (0-0.5)	ASB-12C (2-2.5)	ASB-12C (4-4.5)	ASB-13c (0-0.5)	ASB-13c (2-2.5)	DUP-16-06222020 ASB-13c (2-2.5)	ASB-13c (4-4.5)	ABS-13 N (0-0.5)	ABS-13 N (1-1.5)	ABS-13 E (0-0.5	ABS-13 E (1-1.5)	ABS-13 S (0-0.5)	ABS-13 S (1-1.5)	ABS-13 W (0-0.5)	ABS-13 W (1-1.5) Residential Soil	Commercial/	Screening Soil
		06/22/2020	06/23/2020	06/23/2020	06/23/2020	06/23/2020	06/23/2020	06/22/2020	06/22/2020	06/22/2020	06/22/2020	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021	11/18/2021	Reference Value	Industrial Soil	Leaching Value
Compound/Parameter	CAS No.	Maintenance building (Interior)		Maintenance bu	uilding (Exterior)	l	·								•		•		l	(SRV) (mg/kg)	Reference Value (SRV)	(SLV) (mg/kg)
		Interior crack in slab where agricultural chemical storage occurred	Loading door on w	rest side of building	Loading	door on south side of	building						Water fill area								(mg/kg)	
Volatile Organic Compounds (VOCs) (mg/	/kg)																					
All reported VOCs	-	<rl< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th><rl< th=""><th></th><th><rl< th=""><th></th><th><rl< th=""><th></th><th></th><th></th><th></th><th></th><th></th></rl<></th></rl<></th></rl<></th></rl<>			-							<rl< th=""><th></th><th><rl< th=""><th></th><th><rl< th=""><th></th><th></th><th></th><th></th><th></th><th></th></rl<></th></rl<></th></rl<>		<rl< th=""><th></th><th><rl< th=""><th></th><th></th><th></th><th></th><th></th><th></th></rl<></th></rl<>		<rl< th=""><th></th><th></th><th></th><th></th><th></th><th></th></rl<>						
Metals (mg/kg)																						
Arsenic, Total	7440-38-2	1.4																		9	9	5.8
Barium, Total	7440-39-3	61.2 ^[M1]																		1,100	18,000	1,700
Cadmium, Total	7440-43-9	<0.17																		25	200	8.8
Chromium, Total ^[a]	7440-47-3	20.9																		44,000/87 ^[a]	100,000/650 ^[a]	1,000,000,000/36 ^{[a}
Lead, Total	7439-92-1	4.9																		300	700	2,700
Mercury, Total	7439-97-6	<0.022						14.6	1.3	4.2	0.16	3.3	2.4 [2]	2.4	3.5	2.4	4.2	3.3	3.6	2.7	3.1	3.3
Selenium, Total	7782-49-2	<1.1																		160	1,300	2.6
Silver, Total	7440-22-4	<0.56																		160	1,300	7.9
List 2 Pesticides (mg/kg)																						
2,4-D	94-75-7	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										285	2200	NE
2,4-DB	94-82-6	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										226	1750	NE
2,4,5-T	93-76-5	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										290	2150	NE
2,4,5-TP (Silvex)	93-72-1	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										NE	NE	NE
Bentazon	25057-89-0	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										NE	NE	NE
Dicamba	1918-00-9	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										NE	NE	NE
MCPA	94-74-6	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										16	110	NE
Picloram	1918-02-1	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										2000	15000	NE
Triclopyr	55335-06-3	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										NE	NE	NE
Chlorothalonil	1897-45-6	<0.05	<0.05	<0.05	<0.05	<0.05		< 0.05	<0.05	<0.05										NE	NE	NE
Iprodione	36934-19-7	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10										NE	NE	NE
Propiconazole	60207-90-1	<0.05	<0.05	<0.05	<0.05	<0.05		< 0.05	<0.05	<0.05										NE	NE	NE
Other Parameters (mg/kg)																						
Diesel Range Organics (DRO)																				NE ^[b]	NE ^[b]	NE ^[b]
Gasoline Range Organics (GRO)																				NE ^[b]	NE ^[b]	NE ^[b]
Diisopropyl ether	108-20-3	<0.0582																		NE	NE	NE
Nitrogen, Kjeldahl, Total	7727-37-9		1,060 [M1][R1]	3,850 ^[M6]	197	638														5,000/1,000*		NE
Nitrogen, NO2 plus NO3	14797-55-8		0.25 [N2]	<0.28 ^[N2]	0.25 [N2]	<0.22 [N2]														150-200*		NE
Total Solids (%)	TSOLIDS	86.0																		NE	NE	NE

Total Solids (%)

Notes

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 at mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

--- Not analyzed or calculated for this parameter or not applicable.

RL = Reporting limits for other parameters that are not listed individuall

NE = Regulatory limit not established for this parameter.

a] = Reported result is total chromium, regulatory limit for chromium II

b] = DRO/GRO concentrations greater than 100 mg/kg are not suitable

*The MDA preliminary generic soil cleanup gold for Intrate-nities is 150
[MS] Matrix spike recovery exceeded QC limits. Batch accepted based i

[MG] Matrix spike and Matrix spike duplicate recovery not evaluated ag

Sample was received or analysis requested beyond the recognized met

[N2] The lab does not hold NELAC/TNI accreditation for this parameter

[R1] RPD value was outside control limits.

 $^{[2]}$ [P6] Matrix spike recovery was outside laboratory control lim

Table 6: Test Trenches Soil Analytical Results Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		1														1		
			T	, , , , , , , , , , , , , , , , , , , ,		,		Sample Identifier	and Date Collected				,	,		_		
		TT-1 (2'-4')	TT-1 Hotspot (2-4)	TT-1 (6-7)	TT-2 (2-3')	TT-3 (1-2)	TT-4 (7-8)	TT-5 (2-3)	TT-6 (8-9)	DUP-19-06232020 TT-6 (8-9)	TT-7 (3-5)	TT-9 (3-5)	MeOH Trip Blank	MeOH Trip Blank	MeOH Trip Blank			
		06/24/2020	06/24/2020	06/24/2020	06/24/2020	06/24/2020	06/23/2020	06/23/2020	06/23/2020	06/23/2020	06/25/2020	06/25/2020	06/23/2020	06/24/2020	06/24/2020	Residential Soil	Commercial/	Screening Soil
Compound/Parameter	CAS No.		Former Pool House	- South of Club House		Former Tennis Courts (south of Pool House)		Raised Berm - N	Naintenance Area		Former Pool House	Former Tennis Courts				Reference Value (SRV) (mg/kg)	Industrial Soil Reference Value (SRV)	Leaching Value
		Soil with debris (concrete, asphalt, plastic)	Odorous soil found near buried paint can	Rock base beneath buried concrete slab	Sandy clay fill	Sandy, clayey gravel, fill with weathered Class V gravel	Soil with debris (meta ash, glass)	l, Soil with debris (glass, golf ball)		rete, brick, clay, plastic, ile)	Soil with debris (red asphalt, plastic, concrete, apparent Class 5 aggregate)	Soil with debris (red asphalt, plastic, concrete, apparent Class 5 aggregate)	Field QAQC Sample - Lab Report 10522687	Field QAQC Sample - Lab Report 10522854	Field QAQC Sample Lab Report 10523060	((mg/kg)	(6)
Volatile Organic Compounds (VOCs) (mg/k	(g)	•							•		•				•			
All reported VOCs		<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
Polycyclic Aromatic Hydrocarbons (PAHs)	(mg/kg)																	
Fluoranthene	206-44-0	<0.0109	0.0129	0.0114	< 0.0113	<0.0112	0.245	<0.0113	0.0123	<0.0114	<0.0113	0.0158				1,080	6,800	670
Naphthalene	91-20-3	<0.0109	0.0134	<0.0111	< 0.0113	<0.0112	<0.180	<0.0113	<0.0115	<0.0114	<0.0113	<0.0111				10	28	4.5
Pyrene	129-00-0	< 0.0109	0.0124	<0.0111	< 0.0113	<0.0112	<0.180	<0.0113	0.0118	<0.0114	<0.0113	0.0165				890	5,800	440
All other reported PAHs		<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
BaP Equivalent ^[c]		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	23	1.4
Metals (mg/kg)																		
Arsenic, Total	7440-38-2	1.5	2.0	2.4	1.8	1.8	4.3	3.4	2.9	3.8	2.5	2.8				9	9	5.8
Barium, Total	7440-39-3	33.1	45.2	36.6	31.4	57.9	213	43.6	67.4	104	44.2	51.0				1,100	18,000	1,700
Cadmium, Total	7440-43-9	<0.16	<0.16	<0.16	<0.16	<0.16	2.0	0.23	0.73	0.71	0.18	<0.16				25	200	8.8
Chromium, Total ^[e]	7440-47-3	18.9	18.2	12.8	10.7	17.4	21.8	13.1	32.9	25.8	16.5	16.8				44,000/87 ^[e]	100,000/650 ^[e]	1,000,000,000/36 ^[e]
Lead, Total	7439-92-1	3.3	6.3	9.1	4.9	4.6	622	27.4	13.1	15.7	5.2	4.6				300	700	2,700
Mercury, Total	7439-97-6	<0.019	0.064	0.45	<0.022	0.041	1.2	1.2	4.6	7.2	0.059	0.06				2.7	3.1	3.3
Selenium, Total	7782-49-2	<1.1	<1.1	<1.1	<1.1	<1.1	<1.7	<1.1	<1.1	<1.1	<1.1	<1.0				160	1,300	2.6
Silver, Total	7440-22-4	<0.53	<0.53	<0.54	<0.53	<0.55	<0.87	<0.55	<0.56	<0.54	<0.55	<0.52				160	1,300	7.9
Other Parameters (mg/kg)					_													
Diesel Range Organics (DRO)		<8.5	48.6 ^[T6]	<9.5							<9.4					NE ^[f]	NE ^[f]	NE ^[f]
Gasoline Range Organics (GRO)		<10.6	199 ^[G+]	<10.9										<10.0	<10.0	NE ^[f]	NE ^[f]	NE ^[f]
Diisopropyl ether	108-20-3	<0.0550	<0.0574		<0.0558	<0.0552	<0.0977	<0.0574	<0.0568	<0.0577			<0.0500	<0.0500		NE	NE	NE
Total Solids (%)	TSOLIDS	90.9	87.1		89.5	90.6	51.2	87.1	88.0	86.7						NE	NE	NE

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.

--- = Not analyzed or calculated for this parameter or not applicable.

RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.

NE = Regulatory limit not established for this parameter.

cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.

[c] = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; MPCA; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.

[e] = Reported result is total chromium, regulatory limit for chromium III and chromium VI are provided.

[f] = DRO/GRO concentrations greater than 100 mg/kg are not suitable for reuse as unregulated fill per MPCA Guidance Document c-rem1-01 "Best Management Practices for the Off-Site Reuse of Unregulated Fill" (February 2012).

[1] The continuing calibration for this analyte exceeded 20% difference acceptance criteria for EPA method. Analyte presence below reporting limits in associated samples. No impact to data.

[CC] The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The result may be biased. [G+] Late peaks present outside the GRO window.

[L0] Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

[R1] RPD value was outside control limits.

[T6] High boiling point hydrocarbons are present in the sample.

Exceeds Residential SRV Exceeds 100 mg/kg for DRO/GRO

Soil Arsenic and Mercury Analytical Results - All Data **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Cor	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-1 (0-0.5)	04/19/2019				18.6
	SS-1B (0-0.5)	6/7/2020			117	38.2
	SS-1B (1-1.5)	6/7/2020		Green	29.1	11.6
	SS-1B (2-2.5)	11/16/2022			2.5	13.0
	SS-1BN (0-0.5)	11/15/2021	8th Hole		5.5	4.7
	DUP-10 (SS-1BN (0-0.5))	11/16/2021			5.3	
	SS-1BN (1-1.5)	11/15/2021			2.5	3.6 ^[M1]
	SS-1C (0-0.5)	6/7/2020	6/7/2020	Davidh adiasant to Guara	3.2	0.08
	SS-1C (1-1.5)	6/7/2020		Rough adjacent to Green	3.7	0.057
	SS-1D (0-0.5)	6/7/2020		Dough poor Sidoualle		0.039
ion	SS-1D (1-1.5)	6/7/2020	9th Hole	Rough near Sidewalk		0.028
cripti	SS-1E (0-0.5)	6/7/2020	9th Hole	Tee Bass		3.9
Desc	SS-1E (1-1.5)	6/7/2020		Tee Box		0.11
ıtion	SS-1F (0-0.5)	6/7/2020			7.4	6.6
Loca	SS-1F (1-1.5)	6/7/2020			2.9	0.057
and	SS-1FE (0-0.5)	11/16/2021		Dough noon Sidoually		0.94
Sample Identifier, Date Collected, and Location Description	SS-1FN (0-0.5)	11/16/2021		Rough near Sidewalk		0.84
ollec	SS-1FS (0-0.5)	11/16/2021				0.026
ate (SS-1FW (0-0.5)	11/16/2021				16.1
er, D	SS-1G (0-0.5)	6/7/2020		Sand Trap		<0.022
ntifi	SS-1G (1-1.5)	6/7/2020	8th Holo	Sanu Hap		0.028
e Ide	SS-1H (0-0.5)	6/7/2020	- 8th Hole	Rough adjacent to Sand Trap		0.13
ldme	SS-1H (1-1.5)	6/7/2020		Rough adjacent to Sand Trap		<0.021
Š	SS-1I (0-0.5)	6/7/2020		Fairmen		6.7 ^[M6]
	SS-1I (1-1.5)	6/7/2020				0.2
	SS-1IE (0-0.5)	11/16/2021				7.1
	SS-1IN (0-0.5)	11/16/2021		Fairway		2.4
	SS-1IS (0-0.5)	11/16/2021				4.6 ^[P6]
	SS-1IW (0-0.5)	11/16/2021				4.4
	SS-1J (0-0.5)	6/7/2020		Tee Box		5.1
	SS-1J (1-1.5)	6/7/2020	9th Hole	Tee box		0.087
	SS-1K (0-0.5)	6/7/2020	Juinole	Rough adjacent to Tee Box		1.1
	SS-1K (1-1.5)	6/7/2020		Hough adjacent to ree box		0.1
	SS-2 (0-0.5)	04/19/2019	Practice Green	Near Driving Range		0.089
Residentia	l/Recreational Soil Re	ference Value (SRV	/) (mg/kg)		9	2.7
Commercia	al/Industrial Soil Refe	rence Value (SRV) ((mg/kg)		9	3.1
Screening	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Con	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-3 (0-0.5)	04/19/2019		Green		43.4
	SS-3B (0-0.5)	05/01/2019		North Fringe of Green		17.8
	SS-3C (0-0.5)	05/01/2019		South Fringe of Green		144
	SS-3D (0-0.5)	05/01/2019		10 ft South of Fringe of Green		113
	SS-3E (0-0.5)	05/10/2019		20 ft South of Fringe of Green		15.1
	SS-3F (0-0.5)	05/10/2019		10 ft North of Fringe of Green		9.9
	SS-3G (0-0.5)	6/9/2020		Sand Trap		0.15
	SS-3G (1-1.5)	6/9/2020		Sanu Trap		<0.022
	SS-3H (0-0.5)	6/9/2020		Fringe of Green		130
	SS-3H (1-1.5)	6/9/2020		Fringe of Green		1.8
	SS-3I (0-0.5)	6/9/2020		Rough adjacent to Green		0.92
	SS-3I (1-1.5)	6/9/2020		hough adjacent to dreen		0.051
L.	SS-3J (0-0.5)	6/9/2020	13th Hole	Fairway		4.0
ripti	SS-3J (1-1.5)	6/9/2020				0.14
Desc	SS-3 J N (0-0.5)	11/17/2021				2.5
tion	SS-3 J E (0-0.5)	11/17/2021		i ali way		3.8
Loca	SS-3 J S (0-0.5)	11/17/2021				3.9
Sample Identifier, Date Collected, and Location Description	SS-3 J W (0-0.5)	11/17/2021				3.7
	SS-3K (0-0.5)	6/9/2020		Rough		0.9
	SS-3K (1-1.5)	6/9/2020		Nougii		0.1
rte C	SS-3L (0-0.5)	6/9/2020		Rough		1.4
r, Da	SS-3L (1-1.5)	6/9/2020		Kougii		0.054
ntifie	SS-3M (0-0.5)	6/9/2020				1.5
ple Idei	Dup-4-06092020 (SS-3M (0-0.5)	6/9/2020		Fairway		1.2
Sam	SS-3M (1-1.5)	6/9/2020				0.043
	SS-4 (0-0.5)	04/19/2019		Green		21.1
	SS-4B (0-0.5)	6/11/2020		Fringe of Green		46.0
	SS-4B (1-1.5)	6/11/2020				0.27
	SS-4C (0-0.5)	6/11/2020				2.5 ^[M1]
	Dup-11-06112020 (SS-4C 0-0.5)	6/11/2020		Rough		2.1
	SS-4C (1-1.5)	6/11/2020	4th Hole			0.24
	SS-4D (0-0.5)	6/11/2020		Fringe of Fairway		3.6
	SS-4D (1-1.5)	6/11/2020		Timbe of Fairway		0.046
	SS-4E (0-0.5)	6/11/2020		Fairway		3.4
	SS-4E (1-1.5)	6/11/2020	ļ	· a way		0.12
	SS-4F (0-0.5)	6/11/2020		Fringe of Fairway		0.13
	SS-4F (1-1.5)	6/11/2020	<u> </u>			<0.023
esidentia	al/Recreational Soil Ref	erence Value (SRV) (mg/kg)		9	2.7
mmerc	ial/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
rooning	Soil Leaching Value (SI	_V) (mg/kg)			5.8	3.3

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Со	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-5 (0-0.5)	6/12/2020		Green		45.3
	SS-5A (0-0.5)	6/12/2020	1 [East Fringe of Green		6.5
	SS-5B (0-0.5)	6/12/2020	Ι Γ	West Fringe of Green		46.3
	SS-5C (0-0.5)	6/12/2020	Ι Γ	10 ft West of Fringe of Green		8.2
	SS-5D (0-0.5)	6/12/2020	1 Γ	Fairway		5.6
	SS-5D (1-1.5)	6/12/2020		Fairway		0.035
	SS-5E (0-0.5)	6/12/2020	1 Γ	Fairway		2.3
	SS-5E (1-1.5)	6/12/2020		rall way		0.053
	SS-5F (0-0.5)	6/12/2020	5th Hole			1.9
	Dup-13-06122020 (SS-5F (0-0.5)	6/12/2020		Rough		2.0
	SS-5F (1-1.5)	6/12/2020] [<0.019
	SS-5G (0-0.5)	6/12/2020		Fringe of Green		33.5
_	SS-5G (1-1.5)	6/12/2020] [0.066
iptio	SS-5H (0-0.5)	6/12/2020		Sand Trap		<0.021
escr	SS-5H (1-1.5)	6/12/2020				0.025
on D	SS-5I (0-0.5)	6/12/2020		Rough		1.3
ocati	SS-5I (1-1.5)	6/12/2020		Nough		0.11
mple Identifier, Date Collected, and Location Description	SS-5J (0-0.5)	6/12/2020		Tee Box		5.5
	SS-5J (1-1.5)	6/12/2020		ree Box		2.8
	SS-5K (0-0.5)	6/12/2020				0.055 ^[M1]
	Dup-14-06122020 (SS-5K (0-0.5)	6/12/2020	6th Hole	Tee Box		0.053
ier, I	SS-5K (1-1.5)	6/12/2020				0.24
entif	SS-5L (0-0.5)	6/12/2020		Rough		0.16
le Id	SS-5L (1-1.5)	6/12/2020				<0.022
Samp	SS-5M (0-0.5)	6/12/2020		Drainage Area adjacent to		0.13
S	SS-5M (1-1.5)	6/12/2020		Tee Box		0.3
	SS-6 (0-1)	04/19/2019	Maintenance Building	South of Wash Out Area	2.7	2.8
	SS-7 (0-1)	04/19/2019	Fertilizer Storage Building	Northwest corner	2.7	2.8
	SS-8 (0-0.5)	05/01/2019	10th Hole	Tee Box		6.8
	SS-8 (0-0.5)	05/10/2019	10th Hole	100 DOX		0.030
	SS-9 (0-0.5)	05/01/2019	14th Hole	Tee Box		0.45
	SS-10 (0-0.5)	05/01/2019] [Fairway - Low Area		4.7
	SS-10B (0-0.5)	6/9/2020]	Fairway		3.7
	SS-10B (1-1.5)	6/9/2020	l L	,		0.04
	SS-10C (0-0.5)	6/9/2020	13th Hole	Fringe of Fairway		1.7
	SS-10C (1-1.5)	6/9/2020	l [<0.023
	SS-10D (0-0.5)	6/9/2020]	Rough		0.87
	SS-10D (1-1.5)	6/9/2020				0.071
dentia	al/Recreational Soil Ref	erence Value (SR	V) (mg/kg)		9	2.7
merc	ial/Industrial Soil Refer	ence Value (SRV)	(mg/kg)		9	3.1
					1	

Notes

 $\label{eq:minnesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg = Milligrams per kilogram.}$

- $\!<$ = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Cor	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-10E (0-0.5)	6/9/2020		Dough		0.22
	SS-10E (1-1.5)	6/9/2020	6/9/2020	Rough		<0.022
	SS-10F (0-0.5)	6/9/2020				2.3
	SS-10F (1-1.5)	6/9/2020		Fringe of Fairway		0.22
	Dup-5-06092020 (SS-10F (1-1.5)	6/9/2020	10th Hole	,		0.61
	SS-10G (0-0.5)	6/9/2020		Fairway		2.8
	SS-10G (1-1.5)	6/9/2020		Tanway		0.57
	SS-10H (0-0.5)	6/9/2020		Fairway		3.5
_	SS-10H (1-1.5)	6/9/2020		i ali way		<0.023
iptio	SS-11 (0-0.5)	5/10/2019	11th Hole	Tee Box		5.2
escr	SS-12 (0-0.5)	5/10/2019	18th Hole	Fairway		5.0
on D	SS-13 (0-0.5)	5/10/2019	11th Hole	Fairway		5.1
ocati	SS-13B (0-0.5)	6/9/2020		Fairway		3.0
nd Lı	SS-13B (1-1.5)	6/9/2020		i ali way		0.08
Sample Identifier, Date Collected, and Location Description	SS-13C (0-0.5)	6/9/2020	13th Hole	Rough		<0.023
	SS-13C (1-1.5)	6/9/2020		Kougii		0.087
	SS-14 (0-0.5)	5/10/2019		Fairway - Low Area		4.4
	SS-14B (0-0.5)	6/9/2020		Fairway		4.0
tifier	SS-14B (1-1.5)	6/9/2020		rall way		0.14
ldent	SS-14C (0-0.5)	6/9/2020		Fringe of Fairway		1.7
ple	SS-14C (1-1.5)	6/9/2020	11th Hole	Fillige Of Fall Way		0.2
San	SS-14D (0-0.5)	6/9/2020		Rough		0.093
	SS-14D (1-1.5)	6/9/2020		Kougii		<0.024
	SS-15 (0-0.5)	5/10/2019		Tee Box		7.0
	SS-16 (0-0.5)	5/10/2019	Ī			4.5
	SS-16B (0-0.5)	6/11/2020		Fairway		1.1
	SS-16B (1-1.5)	6/11/2020	5th Hole			0.2
	SS-16C (0-0.5)	6/11/2020	our noie	Fringe of Fairway		1.2
	SS-16C (1-1.5)	6/11/2020		rillige of Fallway		<0.023
	SS-16D (0-0.5)	6/11/2020	Ī	Dough		1.2
	SS-16D (1-1.5)	6/11/2020		Rough		0.13
sidentia	al/Recreational Soil Ref	erence Value (SRV	() (mg/kg)		9	2.7
mmerci	ial/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
	Soil Leaching Value (SI	\/\ /ma/ka\			5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-17 (0-0.5)	6/10/2020				0.65
	SS-17 (1-1.5)	6/10/2020				10.0
	SS-17 (2-2.5)	11/17/2021				0.035
	SS-17 N (0-0.5)	11/17/2021		Rough next to sand trap		0.52
	SS-17 N (1-1.5)	11/17/2021				1.3
	SS-17 S (0-0.5)	11/17/2021	16th Hole			0.3
	SS-17 S (1-1.5)	11/17/2021				1.6
	SS-17B (0-0.5)	6/10/2020		Sand Trap		0.05
	SS-17B (1-1.5)	6/10/2020	_	Sanu ITap		0.023
	SS-17C (0-0.5)	6/10/2020		Rough		0.088
	SS-17C (1-1.5)	6/10/2020		Nough		0.041
	SS-17D (0-0.5)	6/10/2020		Pough		0.39
	SS-17D (1-1.5)	6/10/2020		Rough		0.028
	SS-17E (0-0.5)	6/10/2020	15th Hole	Fairway		2.4
uc	SS-17E (1-1.5)	6/10/2020	13til Hole	rali way		0.022
riptic	SS-17F (0-0.5)	6/10/2020		Rough		0.16
Desc	SS-17F (1-1.5)	6/10/2020		Nougii		<0.023
tion	SS-17G (0-0.5)	6/10/2020				16.5
Loca	SS-17G (1-1.5)	6/10/2020				0.21
Identifier, Date Collected, and Location Description	SS-17G N (0-0.5)	11/17/2021		Fairway		0.77
	SS-17G E (0-0.5)	11/17/2021		Fairway		1.3
	SS-17G S (0-0.5)	11/17/2021	12th Hole			0.098
	SS-17G W (0-0.5)	11/17/2021				0.44
r, Da	SS-17H (0-0.5)	6/10/2020				1.0
ntifie	SS-17H (1-1.5)	6/10/2020		Rough near Sidewalk		0.12
ple Idei	Dup-9-06102020 (SS-17H (1-1.5)	6/10/2020				0.12
Sample	SS-17I (0-0.5)	6/10/2020		Fringe of Fairway		3.3
	SS-17I (1-1.5)	6/10/2020	11th Hole	Tringe of Full Way		0.56
	SS-17J (0-0.5)	6/10/2020	111111010	Fairway		3.8
	SS-17J (1-1.5)	6/10/2020		ranway		0.16
	SS-18 (0-0.5)	6/7/2020		Rough		0.48
	SS-18 (1-1.5)	6/7/2020		почьп		0.054
	SS-18B (0-0.5)	6/7/2020		Fringe of Fairway		3.1
	SS-18B (1-1.5)	6/7/2020	L			2.7
	SS-18C (0-0.5)	6/7/2020				4.1
	Dup-1-06072020 (SS-18C (0-0.5)	6/7/2020	1st Hole	Fairway		0.85
	SS-18C (1-1.5)	6/7/2020				0.11
	SS-18D (0-0.5)	6/7/2020		Fringe of Fairway		0.8
	SS-18D (1-1.5)	6/7/2020	L			0.042
	SS-18E (0-0.5)	6/7/2020		Rough		0.13
	SS-18E (1-1.5)	6/7/2020		почьп		<0.021
identia	al/Recreationa; Soil Ref	erence Value (SRV) (mg/kg)		9	2.7
nmerc	ial/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
		1	1			

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Con	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-19 (0-0.5)	6/10/2020		Daugh adjacent to Fairway		1.1
	SS-19 (1-1.5)	6/10/2020		Rough adjacent to Fairway		0.12
	SS-19B (0-0.5)	6/10/2020				3.1
	SS-19B (1-1.5)	6/10/2020				0.65
	SS-19BE (0-0.5)	11/16/2021		Rough adjacent to Fairway		2.3
	SS-19BN (0-0.5)	11/16/2021				2.9
	SS-19BS (0-0.5)	11/16/2021				2.8
	SS-19C (0-0.5)	6/10/2020		Fairway		3.0
	SS-19C (1-1.5)	6/10/2020	3rd Hole	1 dii way		0.3
	SS-19D (0-0.5)	6/10/2020		Fairway		2.0
	SS-19D (1-1.5)	6/10/2020	_	rali way		0.092
	SS-19E (0-0.5)	6/10/2020		Frings of Fairway		0.67
	SS-19E (1-1.5)	6/10/2020		Fringe of Fairway		<0.021
	SS-19F (0-0.5)	6/10/2020				0.35
tion	Dup-8-06102020 (SS-19F (0-0.5)	6/10/2020		Rough		0.35
cript	SS-19F (1-1.5)	6/10/2020				0.047
Des	SS-20 (0-0.5)	6/9/2020				0.021
tion	SS-20 (1-1.5)	6/9/2020		Tee Box		0.07
e Identifier, Date Collected, and Location Description	SS-20B (0-0.5)	6/9/2020				0.33
	Dup-3-06092020 (SS-20B (0-0.5)	6/9/2020		Rough adjacent to Tee Box		0.26
	SS-20B (1-1.5)	6/9/2020	14th Hole			0.11
	SS-20C (0-0.5)	6/9/2020				6.8
, Dat	SS-20C (1-1.5)	6/9/2020		Tee Box		0.023
tifier	SS-20D (0-0.5)	6/9/2020				2.8
ldeni	SS-20D (1-1.5)	6/9/2020		Rough adjacent to Tee Box		0.068 ^[M1]
ple	SS-21 (0-0.5)	6/11/2020				4.5
Sampl	SS-21 (1-1.5)	6/11/2020		Fairway		0.031
	SS-21B (0-0.5)	6/11/2020	15th Hole	Rough		0.1
	SS-21B (1-1.5)	6/11/2020				<0.023
	SS-21C (0-0.5) ^[a]	6/11/2020				0.6
	SS-21C (1-1.5) ^[a]	6/11/2020		Tee Box		0.062
	SS-21D (0-0.5)	6/11/2020	ŀ			0.53
	Dup-10-06112020 (SS-21D (0-0.5)	6/11/2020		Tee Box		0.54
	SS-21D (0-0.5)	6/11/2020				0.19
	SS-21E (0-0.5)	6/11/2020	16th Hole			0.047
	SS-21E (1-1.5)	6/11/2020		Tee Box		<0.022
	SS-21F (0-0.5)	6/11/2020	}			0.82
	SS-21F (1-1.5)	6/11/2020		Tee Box		0.25
	SS-21G (0-0.5)	6/11/2020	}			0.56
	SS-21G (0-0.5)	6/11/2020		Rough adjacent to Tee Box		0.051
esidentia	al/Recreational Soil Ref) (mg/kg)		9	2.7
					+	
ırımerc	ial/Industrial Soil Refer	ence value (SRV) (ilig/kg)		9	3.1
reening	Soil Leaching Value (SI	.V) (mg/kg)			5.8	3.3

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$ mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

 $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		(mg/kg)	Mercury, Tota (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-22 (0-0.5)	6/9/2020		Dough adjacent to Too Day		1.4
	SS-22 (1-1.5)	6/9/2020		Rough adjacent to Tee Box		0.038
	SS-22B (0-0.5)	6/9/2020				16.9
	Dup-6-06092020 (SS-22B (0-0.5)	6/9/2020				25.0
	SS-22B (1-1.5)	6/9/2020				109
	SS-22B N (0-0.5)	11/17/2021				0.19 ^[M1]
	SS-22B N (1-1.5)	11/17/2021		Tee Box		0.028
	SS-22B N (2-2.5)	11/17/2021	11th Hole	TCC BOX		0.028
	SS-22B E (0-0.5)	11/17/2021	Trans.c			0.37
	SS-22B E (1-1.5)	11/17/2021				0.049
	SS-22B S (0-0.5)	11/17/2021				2.2
	SS-22B S (1-1.5)	11/17/2021				0.097
	SS-22C (0-0.5)	6/9/2020				4.5
	SS-22C (1-1.5)	6/9/2020		Tee Box		0.22
ion	SS-22D (0-0.5)	6/9/2020				0.077
cripti	SS-22D (1-1.5)	6/9/2020		Rough		0.023
Des	SS-22E (0-0.5)	6/9/2020		5 1 4 5 5		2.2
tion	SS-22E (1-1.5)	6/9/2020		Rough Adjacent to Fairway		0.15
Locs	SS-22F (0-0.5)	6/9/2020		Fairman		3.0
Sample Identifier, Date Collected, and Location Description	SS-22F (1-1.5)	6/9/2020		Fairway		0.072
	SS-22G (0-0.5)	6/9/2020	424b Hala	Falmon		4.7
	SS-22G (1-1.5)	6/9/2020	13th Hole	Fairway		0.073
	SS-22H (0-0.5)	6/9/2020		Frience of Follows		1.8
er, D	SS-22H (1-1.5)	6/9/2020		Fringe of Fairway		0.08
lentifi	SS-22I (0-0.5)	6/9/2020		Dough		0.066
e Ide	SS-22I (1-1.5)	6/9/2020		Rough		<0.023
amp	SS-23 (0-0.5)	6/10/2020		Groon		44.1 ^[M6]
Ϋ́	SS-23 (1-1.5)	6/10/2020		Green		0.04
	SS-23B (0-0.5)	6/10/2020	2nd Hole	Sand Trap		0.029
	SS-23B (1-1.5)	6/10/2020	Zilu Hole	Sanu ITap		0.025
	SS-23C (0-0.5)	6/10/2020		Rough		1.3
	SS-23C (1-1.5)	6/10/2020		Nough		0.086
	SS-23D (0-0.5)	6/10/2020		Rough adjacent to Tee Box		2.3
	SS-23D (1-1.5)	6/10/2020		nough adjacent to fee box		0.091
	SS-23E (0-0.5)	6/10/2020		Tee Box		4.8
	SS-23E (1-1.5)	6/10/2020		ree box		1.0
	SS-23F (0-0.5)	6/10/2020	3rd Hole	Tee Box		0.042
	SS-23F (1-1.5)	6/10/2020				0.035
	SS-23G (0-0.5)	6/10/2020		Tee Box		8.0
	SS-23G (1-1.5)	6/10/2020				0.11
	SS-23H (0-0.5)	6/10/2020		Rough		0.33
	SS-23H (1-1.5)	6/10/2020				<0.022
dentia	l/Recreational Soil Ref	erence Value (SRV)	(mg/kg)		9	2.7
merci	al/Industrial Soil Refer	ence Value (SRV) (r	ng/kg)		9	3.1
						1

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \,SS-21C \,(0-0.5) \,and \,SS-21C \,(1-1.5) \,were \,mislabeled \,by \,the \,lab \,as \,SS-21K \,(0-0.5) \,and \,SS-21K \,(1-1.5), \,respectively.$
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Cor	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-23I (0-0.5)	6/10/2020		Daviele		1.4
	SS-23I (1-1.5)	6/10/2020		Rough		0.042
	SS-23J (0-0.5)	6/10/2020	4745 11-1-	Fairway		0.49
	SS-23J (1-1.5)	6/10/2020	17th Hole			0.39
	SS-23K (0-0.5)	6/10/2020		Fairmen		1.4
	SS-23K (1-1.5)	6/10/2020		Fairway		0.029
	SS-24 (0-0.5)	6/12/2020		Too Day		0.023
	SS-24 (1-1.5)	6/12/2020		Tee Box		<0.022
	SS-24B (0-0.5)	6/12/2020	Driving Range	Dunation Curren		<0.021
	SS-24B (1-1.5)	6/12/2020		Practice Green		<0.021
	SS-24C (0-0.5)	6/12/2020		Fairman		0.033
	SS-24C (1-1.5)	6/12/2020		Fairway		<0.020
ion	SS-24D (0-0.5)	6/12/2020		Tee Day		<0.022
cripti	SS-24D (1-1.5)	6/12/2020		Tee Box		<0.020
Des	SS-24E (0-0.5)	6/12/2020		Fainteen		0.25
ıtion	SS-24E (1-1.5)	6/12/2020		Fairway		<0.021
Loca	SS-24F (0-0.5)	6/12/2020				0.024
Sample Identifier, Date Collected, and Location Description	Dup-15-06122020 (SS-24F (0-0.5)	6/12/2020		Fairway		<0.023
	SS-24F (1-1.5)	6/12/2020				<0.021
lo co	SS-25 (0-0.5)	6/7/2020	1st Holo			63.9
Date	SS-25 (1-1.5)	6/7/2020	1st Hole	Green		1.6
ifier,	SS-26 (0-0.5)	6/10/2020	20111-1-			1.7
dent	SS-26 (1-1.5)	6/10/2020	3rd Hole	Green		0.64 ^[M1]
ple I	SS-27 (0-0.5)	6/11/2020	- 6th Hole			3.0
Sam	SS-27 (1-1.5)	6/11/2020		Green		0.18
	SS-28 (0-0.5)	6/7/2020	0.1.11.1			110 ^[M6]
	SS-28 (1-1.5)	6/7/2020	9th Hole	Green		0.22
	SS-29 (0-0.5)	6/9/2020	404-11-1-	Constr		79.8
	SS-29 (1-1.5)	6/9/2020	10th Hole	Green		0.33
	SS-30 (0-0.5)	6/10/2020	4445			1.3
	SS-30 (1-1.5)	6/10/2020	11th Hole	Green		0.032
	SS-31 (0-0.5)	6/10/2020	4011			1.4
	SS-31 (1-1.5)	6/10/2020	12th Hole	Green		1.6
	SS-32 (0-0.5)	6/9/2020	44.1.1.1	•		40.9
	SS-32 (1-1.5)	6/9/2020	14th Hole	Green		<0.022
	SS-33 (0-0.5)	6/11/2020	45.1	•		73.0
	SS-33 (1-1.5)	6/11/2020	15th Hole	Green		0.085
esidentia	al/Recreational Soil Ref	ference Value (SRV	') (mg/kg)		9	2.7
ommerci	ial/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
	Soil Leaching Value (S	1) () (5.8	3.3

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-34 (0-0.5)	6/10/2020	16th Hole	Green		3.1
	SS-34 (1-1.5)	6/10/2020	10th Hole	dieen		0.15
	SS-35 (0-0.5)	6/10/2020				23.4 ^[M6]
	Dup-7-06092020 (SS-35 (0-0.5)	6/10/2020	17th Hole	Green		20.5
	SS-35 (1-1.5)	6/10/2020				0.086
	SS-36 (0-0.5)	6/15/2020	18th Hole	Green		2.0
	SS-36 (1-1.5)	6/15/2020	18(1111016	dieen		0.1
	SS-37 (0-0.5)	6/11/2020	Drag	tice Green by Club House		2.0
	SS-37 (1-1.5)	6/11/2020	Plac	tice Green by Club House		0.089
	SS-38 (0-0.5)	6/7/2020	2-411-1-	To a Down		0.056
	SS-38 (1-1.5)	6/7/2020	2nd Hole	Tee Box		0.05
tion	SS-39 (0-0.5)	6/10/2020	4th Hole	To a Dour		4.4
scrip	SS-39 (1-1.5)	6/10/2020	4th Hole	Tee Box		<0.023
n De	SS-40 (0-0.5)	6/11/2020				0.4
ation	SS-40 (1-1.5)	6/11/2020	7th Hole	Tee Box		0.036
d Loc	SS-41 (0-0.5)	6/7/2020				6.4
Sample Identifier, Date Collected, and Location Description	Dup-2-06072020 (SS-41 (0-0.5)	6/7/2020	8th Hole	Tee Box		4.6
	SS-41 (1-1.5)	6/7/2020				1.6
	SS-42 (0-0.5)	6/10/2020	12th Hole			0.11
r, Da	SS-42 (1-1.5)	6/10/2020				7.2
ıtifie	SS-42 (2-2.5)	11/17/2021				1.3 ^[M1]
Ider	SS-42 N (0-0.5)	11/17/2021		Tee Box		0.11
nple	SS-42 N (1-1.5)	11/17/2021				5.1
Sar	SS-42 S (0-0.5)	11/17/2021				0.37
	SS-42 S (1-1.5)	11/17/2021				0.66
	SS-43 (0-0.5)	6/9/2020				2.7
	SS-43 (1-1.5)	6/9/2020	13th Hole	Tee Box		0.16
	SS-44 (0-0.5)	6/10/2020	4511.11	- n		11.7
	SS-44 (1-1.5)	6/10/2020	15th Hole	Tee Box		0.13
	SS-45 (0-0.5)	6/10/2020	47:1	- n		0.069
	SS-45 (1-1.5)	6/10/2020	17th Hole	Tee Box		0.028
	SS-46 (0-0.5)	6/10/2020		- -		1.3
	SS-46 (1-1.5)	6/10/2020	4011	Tee Box		0.043
	SS-47 (0-0.5)	6/10/2020	18th Hole	- n		0.054
	SS-47 (1-1.5)	6/10/2020	1	Tee Box		0.025
esidentia	l/Recreational Soil Ref	erence Value (SRV)	(mg/kg)		9	2.7
ommercia	al/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
		LV) (mg/kg)			5.8	3.3

l Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Co	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-48 (0-0.5)	6/7/2020				8.2
	SS-48 (1-1.5)	6/7/2020	2 m d II n l n	Fairman		0.073
	SS-48N (0-0.5)	11/16/2021	2nd Hole	Fairway -		4.7
	SS-48S (0-0.5)	11/16/2021		[3.7
	SS-49 (0-0.5)	6/15/2020				0.96
	SS-49 (1-1.5)	6/15/2020	5th Hole	Rough		<0.022 [M1]
	SS-50 (0-0.5)	6/7/2020	745 11-1-	Fairman		3.5
	SS-50 (1-1.5)	6/7/2020	7th Hole	Fairway -		0.047
	SS-51 (0-0.5)	6/10/2020	4 Calle Helle	Davida dia santa Fairma		2.8
	SS-51 (1-1.5)	6/10/2020	16th Hole	Rough adjacent to Fairway		0.21
	ASB-1 (0-0.5)	06/22/2020				0.042
	ASB-1 (2-2.5)	06/22/2020	Agricultural Chemical	Large crack in floor of west bay	2.4	<0.022
	ASB-2 (0-0.5)	06/22/2020	Storage Building (Interior)			0.024
	ASB-2 (2-2.5)	06/22/2020	(Large crack in floor of east bay		<0.022
	ASB-3 (0-0.5)	06/22/2020	Agricultural Chemical	Large crack in exterior asphalt loading		0.15
	ASB-3 (2-2.5)	06/22/2020	Storage	area		0.048
_	ASB-4 (0-0.5)	06/22/2020	Exterior Chemical			<0.018
otion	ASB-4 (2-2.5)	06/22/2020	Loading Area	Cracked asphalt		<0.022
scrip	ASB-5C (0-0.5)	06/23/2020				<0.023
n De	ASB-5C (2-2.5)	06/23/2020	1	Outlet for drain in concrete loading pad		<0.024
catio	ASB-6c (0-0.5)	06/22/2020	Agricultural Chemical			0.21
d Lo	ASB-6c (2-2.5)	06/22/2020	Storage Shed	Grass area immediately adjacent to		<0.021
Date Collected, and Location Description	DUP-17-06222020 ASB-6c (2-2.5)	06/22/2020		concrete loading pad		<0.024
	ASB-7 (0-0.5)	06/22/2020		Inlet to drainage swale adjacent to mixing		0.036
	ASB-7 (2-2.5)	06/22/2020		area		0.048
	ASB-8c (0-0.5)	06/22/2020	Agricultural Chemical Mixing Area			1.1
ntifie	ASB-8c (2-2.5)	06/22/2020				0.58
Sample Identifier,	DUP-18-06222020 ASB-8c (2-2.5)	06/22/2020		Main mixing area		0.14
Sam	ASB-8c (4-4.5)	06/22/2020	1			0.037
	ASB-9C (0-0.5)	06/23/2020	1	Drainaga araa		0.61
	ASB-9C (2-2.5)	06/23/2020	1	Drainage area		0.78
	ASB-10 (2-2.5)	06/22/2020	Maintenance building (Interior)	Interior crack in slab where agricultural chemical storage occurred	1.4	<0.022
	ABS-13 N (0-0.5)	11/18/2021				3.3
	ABS-13 E (0-0.5)	11/18/2021]			2.4
	ABS-13 S (0-0.5)	11/18/2021]			2.4
	ABS-13 W (0-0.5)	11/18/2021]			3.3
	ABS-13 N (1-1.5)	11/18/2021				2.4 ^[P6]
	ABS-13 E (1-1.5)	11/18/2021				3.5
	ABS-13 S (1-1.5)	11/18/2021]	Water fill area		4.2
	ABS-13 W (1-1.5)	11/18/2021	1	ļ		3.6
	ASB-13c (0-0.5)	06/22/2020	1	ļ		14.6
	ASB-13c (2-2.5)	06/22/2020	1	ļ		1.3
	DUP-16-06222020 ASB-13c (2-2.5)	06/22/2020				4.2
	ASB-13c (4-4.5)	06/22/2020	1	-		0.16
denti	al/Recreational Soil Ref		I V) (mg/kg)		9	2.7
nmerc	ial/Industrial Soil Refer	ence Value (SRV)	(mg/kg)		9	3.1
			\ O! ··O!			
ening	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

Notes

 $\label{eq:model} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013. $$mg/kg = Milligrams per kilogram.$

--- = Not analyzed or calculated for this parameter or not applicable.

[a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

....,

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Со	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		7440-38-2	7439-97-6			
	TT-7 (3-5)	06/25/2020	Former Pool House	Soil with debris (red asphalt, plastic, concrete, apparent Class 5 aggregate base)	2.5	0.059
	TT-9 (3-5)	06/25/2020	Former Tennis Courts	Soil with debris (red asphalt, plastic, concrete, apparent Class 5 aggregate base)	2.8	0.06
	SB-1 (0.5-1.5)	06/24/2020	Former UST Basin Leak Site #5050		3.2	0.94
	SB-2 (0.5-1)	06/24/2020	Former UST Basin Leak Site #18327		2.3	0.82
	SB-5 (.5-1.5)	06/25/2020			2.4	<0.020
	Dup-20-06252020 SB-5 (.5-1.5)	06/25/2020	North F	arking Lot near clubhouse	1.7	0.49
	DSS-1 (0-6'')	07/02/2020		North of shed		0.37
	DSS-1 (1-1.5')	07/02/2020		North of shed		0.38
	DSS-2 (0-6")	07/02/2020	Shed northwest of		2.7	0.38
	DSS-2 (1-1.5')	07/02/2020	clubhouse	Directly northwest of shed	2.7	0.31
	DUP-9 (DSS-2S (0-0.5))	11/15/2021				
	DSS-3 (0-6'')	07/02/2020	1	East-southeast of shed		0.11
ion	DSS-4 (0-6'')	07/02/2020			5.7	0.08
crip	DSS-4 (1-1.5')	07/02/2020	Garages west of	Directly northeast of garage	5.8	0.062
Des ר	DSS-5 (0-6")	07/02/2020	- clubhouse - North garage	Directly northwest of garage		0.21
atior	DSS-5 (1-1.5')	07/02/2020	guruge	Directly northwest of garage		0.06
r F	DSS-6 (0-6")	07/02/2020				0.076
Sample Identifier, Date Collected, and Location Description	DSS-6 (1-1.5')	07/02/2020	1	Directly northwest of garage		0.11
	DSS-7 (0-6")	07/02/2020	1			3.3
	DSS-7 (1-1.5')	07/02/2020	1	ļ		0.3
ate	DSS-7E (0-0.5)	11/16/2021	Garages west of clubhouse - South garage	South of garage		0.62
ier, L	DSS-7S (0-0.5)	11/16/2021		ľ		0.095
entit	DSS-7W (0-0.5)	11/16/2021		ļ		0.084
<u>ө</u>	DSS-8 (0-6")	07/02/2020			2.6	0.31
amp	DSS-8 (1-1.5')	07/02/2020	1	East of garage	2.5	0.3
<i>J</i>)	DSS-102	07/02/2020		Last of garage	3.3	0.38
	DSS-8 (1-1.5) DSS-9 (0-6'')	07/02/2020				0.52
	DSS-9 (1-1.5')	07/02/2020	North garage	East of garage		0.099
	DSS-10 (0-6'')	7/2/2020				0.16
	DSS-11 (0-6'')	7/2/2020	Garages west of	Directly east of garages	2.3	0.29
	DSS-11 (1-1.5')	7/2/2020	clubhouse	, 00	2.3	0.089
	DSS-12 (0-6")	7/2/2020		Northwest of clubhouse		0.042
	DSS-13 (0-6")	7/2/2020	1			2.0
	DSS-13 (1-1.5')	7/2/2020		West of clubhouse		1.7
	DSS-14 (0-6")	7/2/2020	1 <u></u>			4.1
	DSS-14 (1-1.5')	7/2/2020	Clubhouse Area			0.91
	DSS-14N (0-0.5)	11/16/2021	1	South of clubouse		0.19
	DSS-14S (0-0.5)	11/16/2021	1	ļ		0.8
	DSS-14W (0-0.5)	11/16/2021	1			0.71
	DSS-15 (0-6'')	7/2/2020	D. "	Courtly 1 C P	2.1	0.31
	DSS-15 (1-1.5')	7/2/2020	- Poolhouse	Southwest of poolhouse	2.4	0.24
dentia	al/Recreational Soil Ref	erence Value (SR	V) (mg/kg)		9	2.7
merci	al/Industrial Soil Refer	ence Value (SRV)	(mg/kg)		9	3.1
						İ

l Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- $\mbox{---}=\mbox{Not}$ analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Con	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	DSS-16 (0-6'')	7/2/2020				1.6
	DSS-101	7/2/2020	Poolhouse	Northeast of poolhouse		1.1
	DSS-16 (0-6") DSS-16 (1-1.5')	7/2/2020				0.11
	DSS-17 (0-6')	7/2/2020			3.6	0.79
	DSS-17 (1-1.5')	7/2/2020		Southeast of clubhouse	2.3	0.062
	DSS-18 (0-6")	7/2/2020	Clubhouse			0.62
	DSS-18 (1-1.5')	7/2/2020		Northwest of clubhouse		0.89
	Sed-1	07/02/2020		Center of Pond Adjacent to 9th Hole		1.5 ^[M1]
	SED 1A (0-0.5)	07/15/2020		Southeast slope		0.23
	PW-1A (0-0.5)	08/12/2020				0.41
	PW-1B (0-0.5)	08/12/2020		West slope		2.8
	PW-1C (0-0.5)	08/12/2020				0.31
otion	PW-1D (0-0.5)	08/12/2020		Southeast slope		0.54
scrip	PW-1E (0-0.5)	08/12/2020		South of pond		0.94
n De	PW-1F (0-0.5)	08/12/2020				26.3
Sample Identifier, Date Collected, and Location Description	PW-1G (0-0.5)	08/12/2020	9th Hole			16.5
d Lo	PW-1G (1-1.5)	11/16/2021				0.076
d, an	PW-1GN (0-0.5)	11/16/2021				1.0
ecte	PW-1GW (0-0.5)	11/16/2021				8.8
- CO	PW-1F (1-1.5)	11/16/2021		Southwest of pond		0.063
Date	PW-1FE (0-0.5)	11/16/2021				0.7
fier,	PW-1FS (0-0.5)	11/16/2021				1.2
denti	PW-1H (0-0.5)	08/12/2020				0.83
ple Ic	Sed-2	07/02/2020		Center		0.21
Sam	SED 2A (0-0.5)	07/15/2020		Courthouset alone		0.59
	Sed-2A (1-1.5)	08/12/2020		Southwest slope		0.42
	PW-2A (0-0.5)	08/12/2020		East slope		0.73
	PW-2B (0-0.5)	08/12/2020		East of pond		0.16
	PW-2C (0-0.5)	08/12/2020		West slope		0.94
	PW-2D (0-0.5)	08/12/2020	8th Hole	West slope		1.9
	PW-2E (0-0.5)	08/12/2020	otti nole	East slope		0.028
	PW-2F (0-0.5)	08/12/2020		Northwest of pond		0.28
	PW-2F (1-1.5)	08/12/2020		Northwest of polic		0.22
	PW-2G (0-0.5)	08/12/2020		Southwest of pond		0.13
	PW-2H (0-0.5)	08/12/2020		South of pond		0.2
	PW-2I (0-0.5)	08/12/2020		Southwest of pond		0.18
	PW-2J (0-0.5)	08/12/2020		Journwest of polic		0.063
Residentia	al/Recreational Soil Re	ference Value (SRV	() (mg/kg)		9	2.7
Commerci	al/Industrial Soil Refe	rence Value (SRV) (mg/kg)		9	3.1
Screening	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

 $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Co	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		7440-38-2	7439-97-6			
	Sed-3	07/02/2020				0.56
	Sed-101 (Sed-3)	07/02/2020]	Center		0.3
	SED 3A (0-0.5)	07/15/2020	1	North slope		0.044
	PW-3A (0-0.5)	08/12/2020	2nd Hole	Northwest slope		0.075
	PW-3B (0-0.5)	08/12/2020	1	West of center		0.47
	PW-3C (0-0.5)	08/12/2020	1			1.1
	PW-3D (0-0.5)	08/12/2020		Southeast slope		0.056
	Sed-4	07/02/2020		Center		0.069
	SED 4A (0-0.5)	07/15/2020	†			0.16
cription	SED 4A (1-1.5)	07/15/2020	1	Southwest slope		0.19
	PW-4A (0-0.5)	08/12/2020	South of	·		<0.024
	PW-4B (0-0.5)	08/12/2020	2nd Hole	Southeast slope		0.18
	PW-4C (0-0.5)	08/12/2020	 			0.2
	PW-4D (0-0.5)	08/12/2020	1	East slope		0.046
	Sed-5	07/02/2020		Southeast of building		0.1
	PW-5A (0-0.5)	08/12/2020	 			0.14
	PW-5B (0-0.5)	08/12/2020	1			0.098
	PW-5C (0-0.5)	08/12/2020	-	Northwest of building		0.084
escr	PW-5D (0-0.5)	08/12/2020	-			0.28
ion [PW-5E (0-0.5)	08/12/2020	-			8.0
ocati	PW-5E (1-1.5)	11/16/2021	-			0.071
nd L	PW-5EE (0-0.5)	11/16/2021	-	West of building		2.9
Date Collected, and Location Description	PW-5ES (0-0.5)	11/16/2021	Maintenance Building	West of building		41.9
	PW-5EW (0-0.5)	11/16/2021	_			0.27
	PW-5F (0-0.5)	08/12/2020	 			3.7
	PW-5F (1-1.5)	11/18/2021				
tifier	PW-5F N (0-0.5)	11/18/2021				6.8
lden	PW-5F E (0-0.5)	11/18/2021		Southwest of building		0.29
Sample Identifier,	PW-5F S (0-0.5)	11/18/2021				2.2
San	PW-5G (0-0.5)	08/12/2020				0.66 2.5
	Sed-6	07/02/2020		Center		12.9
	PW-6A (0-0.5)	08/12/2020	 	Center		1.9
	PW-6B (0-0.5)	08/12/2020	-	North slope		2.5
	PW-66 (0-0.5)	08/12/2020	 	Northeast slope		6.4 ^[M6]
			 			
	PW-6D (0-0.5) PW-6E (0-0.5)	08/12/2020	 	Northwest slope		9.3
	PW-6E (0-0.5)	08/12/2020	 	South slope		0.26
	PW-6F (0-0.5)	08/12/2020	Name to a C	Southeast slope		0.26
	PW-6G (0-0.5)	08/12/2020	North of 6th Hole	Southeast slope		0.025
	PW-6H (0-0.5) PW-6I (0-0.5)	08/12/2020	1			0.28
	PW-6J (0-0.5)	08/12/2020	 			0.5
	PW-6J (0-0.5)	08/12/2020	 			3.4
	PW-6K (0-0.5)	11/18/2021	 	North of pond		
			 			2.3
	PW-6K N (0-0.5)	11/18/2021	1			0.27
	PW-6K S (0-0.5)	11/18/2021	1			1.4
	PW-6K W (0-0.5)	11/18/2021				0.11
dentia	al/Recreational Soil Ref	erence Value (SR	V) (mg/kg)		9	2.7
ımerci	ial/Industrial Soil Refer	ence Value (SRV)	(mg/kg)		9	3.1
		+	t			

Notes

 $\label{eq:minesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013. $$mg/kg = Milligrams per kilogram.$

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)			
			CAS No.		7440-38-2	7439-97-6
	Sed-7	07/02/2020		Center		11.7
	SED-7 (1-1.5)	11/17/2021		Center		<0.024
	SED 7A (0-0.5)	07/15/2020		Northwest slope		0.12
	SED 7B (0-0.5)	07/15/2020		Northwest of center		11.9
	Sed-7B (1-1.5)	08/12/2020		Northwest of center		0.045
	SED 7C (0-0.5)	07/15/2020		Southeast of center		1.1
	SED 7C (1-1.5)	07/15/2020		Southeast of center		0.21
_	SED 7D (0-0.5)	07/15/2020		Cauthanatalana		0.28
ptio	SED 7D (1-1.5)	07/15/2020	Ath Hala	Southeast slope		0.16
escri	SED-7 E (0-0.5)	11/17/2021	4th Hole			0.13
on D	SED-7 E (1-1.5)	11/17/2021		Southeast of center		0.055
ocatic	SED-7 F (0-0.5)	11/17/2021				0.24
nd Lc	SED-7 G (0-0.5)	11/17/2021		No other or other or		0.075
Sample Identifier, Date Collected, and Location Description	SED-7 H (0-0.5)	11/17/2021		Northwest slope		0.33
	PW-7A (0-0.5)	08/12/2020		Southeast of center		2.4
	PW-7B (0-0.5)	08/12/2020		Southeast slope		0.21
Dati	PW-7C (0-0.5)	08/12/2020		Northwest of pond		0.046
ifier,	PW-7D (0-0.5)	08/12/2020		Northwest slope		1.6
dent	Soil 1-0-0.5	07/15/2020				0.1
ple I	Soil 1-1-1.5	07/15/2020	4th Hole Tee box	West slope		0.034
Sam	ST-2 (0-2)	04/12/2019	Former Pool House	Southwest corner	3.9	0.22
	ST-3 (0-2)	04/13/2019	8th Hole	Green	15.7	6.3
	ST-5 (1-3)	04/12/2019	13th Hole	Green	<5.3 ^[D3]	0.044
	ST-6 (2-4)	04/12/2019	Between 13th Hole and 11th Hole	Rough	1.7	<0.020
	ST-8 (5-7)	04/13/2019	Maintenance Shed	Wash Out Area	<1.2	0.028
	ST-10 (1-3)	04/12/2019	16th Hole	Rough East of Hole	2.0	0.027
	ST-11 (4-6)	04/13/2019	4th Hole	Green	1.7	<0.020
	ST-12 (2-4)	04/13/2019	5th Hole	Green	6.4	0.031
esidentia	esidential/Recreational Soil Reference Value (SRV) (mg/kg)					2.7
Commerci	ommercial/Industrial Soil Reference Value (SRV) (mg/kg)					3.1
creening	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Со	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	GP-1 0-1	05/07/2019			2.1	<0.020
	GP-1 1-2	05/07/2019	Practice Green	Fringe		<0.019
	GP-2 0-1	05/07/2019	De al IIIawaa	Canada Area to Courth		0.13
	GP-2 4-5	05/07/2019	Pool House	Grassy Area to South	2.0	0.12
	GP-3 0-1	05/07/2019		_	2.2	0.068
	GP-3 1-2	05/07/2019	Former Tennis Courts	Green		0.026
	GP-4 1-2	05/07/2019	4211 11 1			1.4
	GP-4 2-3	05/07/2019	13th Hole	Green		0.047
	GP-5 1-2	05/07/2019				6.1
	GP-5 2-3	05/07/2019	4th Hole	Green		0.067
	GP-6 1-2	05/07/2019	5th Hole	Green		0.099
	GP-7 1-2	05/07/2019				0.094
	GP-7 3-4	05/07/2019	Maintenance Building	South Wash Area		0.041
	GP-8 1-2	05/07/2019				2.3
	GP-8 3-4	05/07/2019	Maintenance Building	Main Wash Area		0.74
	GP-9 0-1'	05/07/2019			4.6	0.23
	GP-9 5-6'	05/07/2019	Maintenance Building	Berm to North	4.9	0.033
	Maint Berm		Berm	Berm South of Maintenance Area	3.7	4.9
	FW1-DU1 (0-0.5)	05/10/2019 11/12/2021	венн	Berm South of Maintenance Area	5.7	3.1
ion	FW1-DU2 (0-0.5)	11/12/2021	1st Fairway			4.1
cript	DUP-8	11/12/2021		13t i an way		5.4
Desi	(FW1-DU2(0-0.5) FW2-DU1 (0-0.5)	11/11/2021	2nd Fairway			2.6
tion	FW3-DU1 (0-0.5)	11/11/2021		Ziid i dii way		3.2
Loca	FW3-DU2 (0-0.5)	11/11/2021		2rd Fairway		3.6
Sample Identifier, Date Collected, and Location Description	FW3-DU3 (0-0.5) DUP-5	11/11/2021	1	3rd Fairway		3.1
ed,	(FW3-DU3(0-0.5)	11/11/2021				3.3
llect	FW4-DU1 (0-0.5)	11/09/2021				2.5
te Co	DUP-3 (FW4-DU1(0-0.5))	11/09/2021	4th Fairway			3.0
, Dai	FW4-DU2 (0-0.5)	11/09/2021				2.4
ifier	FW4-DU3 (0-0.5)	11/09/2021				1.9
dent	FW5-DU1 (0-0.5) FW5-DU2 (0-0.5)	11/08/2021 11/08/2021				2.2
ple I	DUP-2	11/08/2021	1	5th Fairway		2.4
Sam	(FW5-DU2 (0-0.5))					
	FW5-DU3 (0-0.5) FW6-DU1 (0-0.5)	11/08/2021 11/08/2021				6.8 4.4 ^[1]
	FW6-DU2 (0-0.5)	11/08/2021				6.8
	DUP-1	11/08/2021		6th Fairway		20.2
	(FW6-DU2 (0-0.5)) FW6-DU3 (0-0.5)	11/08/2021	-			1.9
	FW7-DU1 (0-0.5)	11/11/2021				2.8
	FW7-DU2 (0-0.5)	11/11/2021		7th Fairway		3.0
	FW7-DU3 (0-0.5) FW8-DU1 (0-0.5)	11/11/2021 11/12/2021				2.9 5.2
	FW8-DU2 (0-0.5)	11/12/2021]			5.4
	FW8-DU3 (0-0.5) DUP-7	11/12/2021	1	8th Fairway		1.8
	(FW8-DU3(0-0.5)	11/12/2021				3.5
	FW9-DU1 (0-0.5)	11/12/2021		9th Fairway		0.31
	FW10-DU1 (0-0.5) FW10-DU2 (0-0.5)	11/10/2021 11/10/2021	1	10th Fairway		11.9 3.4
	FW10-DU3 (0-0.5)	11/10/2021	1	·		2.8
	FW11-DU1 (0-0.5) FW11-DU2 (0-0.5)	11/09/2021	_	11th Egirusu		3.3 2.3
	FW11-DU2 (0-0.5)	11/09/2021 11/10/2021	1	11th Fairway		2.7 [1]
	FW12-DU1 (0-0.5)	11/09/2021		12th Fairway		1.1
	FW13-DU1 (0-0.5)	11/10/2021				15.1
	FW13-DU2 (0-0.5) DUP-4	11/10/2021	1	13th Fairway		2.9
		11/10/2021]	- 1		2.6
	(FW13-DU2(0-0.5)		Ī			2.9
	(FW13-DU2(0-0.5) FW13-DU3 (0-0.5)	11/10/2021				
Residenti			V) (mg/kg)		9	2.7
	FW13-DU3 (0-0.5)	ference Value (SR			9	2.7 3.1

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

- < = Not detected at or above the laboratory reporting limit indicated.
- $\mbox{---}$ = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Table 7 Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota

Project B1903316.00

		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)		
		7440-38-2	7439-97-6		
	FW14-DU1 (0-0.5)	11/10/2021			3.5
	FW14-DU2 (0-0.5)	11/10/2021	14th Fairway		3.1
	FW14-DU3 (0-0.5)	11/10/2021			3.5
ion	FW15-DU1 (0-0.5)	11/09/2021	15th Fairway		1.9
ript	FW15-DU2 (0-0.5)	11/09/2021	,		4.7
escr	FW16-DU1 (0-0.5)	11/09/2021	16th Fairway		3.3
م ر	FW17-DU1 (0-0.5)	11/11/2021			1.4
Sample Identifier, Date Collected, and Location Description	FW17-DU2 (0-0.5)	11/11/2021	17th Fairway		2.7
	FW17-DU3 (0-0.5)	11/11/2021			1.2
	FW18-DU1 (0-0.5)	11/11/2021			7.6
	DUP-6 (FW18-DU1(0-0.5)	11/11/2021	18th Fairway		3.4
cte	FW18-DU2 (0-0.5)	11/11/2021			3.6
9	FW18-DU3 (0-0.5)	11/11/2021			1.7
e O	3rd Green C (0-0.5)	11/18/2021	3rd Green		89.2
Dat	6th Green C (0-0.5)	11/18/2021	6th Green		18.6
er,	7th Green C (0-0.5)	11/18/2021	7th Green		102.0
ldentifi	10th Green C (0-0.5)	11/18/2021	10th Green		79.0
mple I	11th Green C (0-0.5)	11/18/2021	11th Green		161.0
Sa	12th Green C (0-0.5)	11/18/2021	12th Green		59.8
	18th Green C (0-0.5)	11/18/2021	18th Green		66.5
Residenti	al/Recreational Soil Ref	9	2.7		
Commerc	ommercial/Industrial Soil Reference Value (SRV) (mg/kg)				3.1
Screening	g Soil Leaching Value (SL	.V) (mg/kg)		5.8	3.3

Notes

 $\label{eq:minesota} \mbox{ Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013. $$mg/kg = Milligrams per kilogram.$

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \,SS-21C \,(0-0.5) \,and \,SS-21C \,(1-1.5), \, were \, mislabeled \,by \,the \,lab \,as \,SS-21K \,(0-0.5) \,and \,SS-21K \,(1-1.5), \, respectively.$
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$

 $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Exceeds Residential/Recreational SRV

Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Cor	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-1 (0-0.5)	04/19/2019				18.6
	SS-1B (0-0.5)	6/7/2020			117	38.2
	SS-1B (1-1.5)	6/7/2020			29.1	11.6
	SS-1B (2-2.5)	11/16/2022		Green	2.5	13.0
	SS-1BN (0-0.5)	11/15/2021	8th Hole		5.5	4.7
	DUP-10 (SS-1BN (0-0.5))	11/16/2021			5.3	
	SS-1BN (1-1.5)	11/15/2021			2.5	3.6 ^[M1]
	SS-1C (0-0.5)	6/7/2020		Davish adiacout to Cuson	3.2	0.08
	SS-1C (1-1.5)	6/7/2020		Rough adjacent to Green	3.7	0.057
	SS-3 (0-0.5)	04/19/2019		Green		43.4
	SS-3B (0-0.5)	05/01/2019		North Fringe of Green		17.8
	SS-3C (0-0.5)	05/01/2019		South Fringe of Green		144
ption	SS-3D (0-0.5)	05/01/2019		10 ft South of Fringe of Green		113
escri	SS-3E (0-0.5)	05/10/2019	13th Hole	20 ft South of Fringe of Green		15.1
Sample Identifier, Date Collected, and Location Description	SS-3F (0-0.5)	05/10/2019		10 ft North of Fringe of Green		9.9
ocati	SS-3G (0-0.5)	6/9/2020				0.15
nd L	SS-3G (1-1.5)	6/9/2020		Sand Trap		<0.022
ted, a	SS-3H (0-0.5)	6/9/2020				130
ollec	SS-3H (1-1.5)	6/9/2020		Fringe of Green		1.8
ate C	SS-3I (0-0.5)	6/9/2020				0.92
ier, D	SS-3I (1-1.5)	6/9/2020		Rough adjacent to Green		0.051
entifi	SS-4 (0-0.5)	04/19/2019		Green		21.1
ole Id	SS-4B (0-0.5)	6/11/2020	4th Hole			46.0
Samp	SS-4B (1-1.5)	6/11/2020		Fringe of Green		0.27
	SS-5 (0-0.5)	6/12/2020		Green		45.3
	SS-5A (0-0.5)	6/12/2020		East Fringe of Green		6.5
	SS-5B (0-0.5)	6/12/2020		West Fringe of Green		46.3
	SS-5C (0-0.5)	6/12/2020	5th Hole	10 ft West of Fringe of Green		8.2
	SS-5G (0-0.5)	6/12/2020				33.5
	SS-5G (1-1.5)	6/12/2020		Fringe of Green		0.066
	SS-23 (0-0.5)	6/10/2020		_		44.1 ^[M6]
	SS-23 (1-1.5)	6/10/2020	2nd Hole	Green		0.04
	SS-24B (0-0.5)	6/12/2020	.	<u> </u>		<0.021
	SS-24B (1-1.5)	6/12/2020	Driving Range	Practice Green		<0.021
	SS-25 (0-0.5)	6/7/2020		_		63.9
	SS-25 (1-1.5)	6/7/2020	1st Hole	Green		1.6
Residentia	l/Recreationa; Soil Ref	erence Value (SRV) (mg/kg)		9	2.7
Commercia	al/Industrial Soil Refer	ence Value (SRV) (mg/kg)		9	3.1
Screening S	Soil Leaching Value (SI	LV) (mg/kg)			5.8	3.3

Notes

 $\label{eq:minesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg} = \mbox{Milligrams per kilogram}.$

- $\!<$ = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \ SS-21C \ (0-0.5) \ and \ SS-21C \ (1-1.5), \ respectively.$
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Cor	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-26 (0-0.5)	6/10/2020		_		1.7
	SS-26 (1-1.5)	6/10/2020	3rd Hole	Green		0.64 ^[M1]
	SS-27 (0-0.5)	6/11/2020	611.11.1			3.0
	SS-27 (1-1.5)	6/11/2020	6th Hole	Green		0.18
	SS-28 (0-0.5)	6/7/2020	045.11515	Constant		110 ^[M6]
	SS-28 (1-1.5)	6/7/2020	9th Hole	Green		0.22
	SS-29 (0-0.5)	6/9/2020	401.11			79.8
	SS-29 (1-1.5)	6/9/2020	10th Hole	Green		0.33
	SS-30 (0-0.5)	6/10/2020				1.3
	SS-30 (1-1.5)	6/10/2020	11th Hole	Green		0.032
	SS-31 (0-0.5)	6/10/2020		_		1.4
	SS-31 (1-1.5)	6/10/2020	12th Hole	Green		1.6
ion	SS-32 (0-0.5)	6/9/2020		•		40.9
cripti	SS-32 (1-1.5)	6/9/2020	14th Hole	Green		<0.022
ו Des	SS-33 (0-0.5)	6/11/2020		_		73.0
atior	SS-33 (1-1.5)	6/11/2020	15th Hole	Green		0.085
д Гос	SS-34 (0-0.5)	6/10/2020				3.1
d, an	SS-34 (1-1.5)	6/10/2020	16th Hole	Green		0.15
lectec	SS-35 (0-0.5)	6/10/2020	17th Hole			23.4 ^[M6]
Sample Identifier, Date Collected, and Location Description	Dup-7-06092020 (SS-35 (0-0.5)	6/10/2020		Green		20.5
fier, I	SS-35 (1-1.5)	6/10/2020				0.086
denti	SS-36 (0-0.5)	6/15/2020	18th Hole	Green		2.0
ple Id	SS-36 (1-1.5)	6/15/2020	18th Hole	Green		0.1
Sam	SS-37 (0-0.5)	6/11/2020	Dun et	iee Creen by Club Heyes		2.0
	SS-37 (1-1.5)	6/11/2020	Pract	ice Green by Club House		0.089
	ST-3 (0-2)	04/13/2019	8th Hole	Green	15.7	6.3
	ST-5 (1-3)	04/12/2019	13th Hole	Green	<5.3 ^[D3]	0.044
	ST-11 (4-6)	04/13/2019	4th Hole	Green	1.7	<0.020
	ST-12 (2-4)	04/13/2019	5th Hole	Green	6.4	0.031
	GP-3 0-1	05/07/2019	Former Total Co.	C.	2.2	0.068
	GP-3 1-2	05/07/2019	Former Tennis Courts	Green		0.026
	GP-4 1-2	05/07/2019	4211			1.4
	GP-4 2-3	05/07/2019	13th Hole	Green		0.047
	GP-5 1-2	05/07/2019	A.1			6.1
	GP-5 2-3	05/07/2019	4th Hole	Green		0.067
	GP-6 1-2	05/07/2019	5th Hole	Green		0.099
esidentia	l/Recreational Soil Ref	erence Value (SRV	') (mg/kg)		9	2.7
ommercia	al/Industrial Soil Refer	ence Value (SRV)	(mg/kg)		9	3.1
crooning	Soil Leaching Value (SI				5.8	3.3

Notes

 $\label{eq:minnesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg} = \mbox{Milligrams per kilogram}.$

- $\!<$ = Not detected at or above the laboratory reporting limit indicated.
- $\mbox{---}=\mbox{Not}$ analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Table 8 Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)		
		7440-38-2	7439-97-6		
te on	3rd Green C (0-0.5)	11/18/2021	3rd Green		89.2
entifier, Date and Location ription	6th Green C (0-0.5)	11/18/2021	6th Green		18.6
Sample Identifier, I Collected, and Loca Description	7th Green C (0-0.5)	11/18/2021	7th Green		102.0
enti anc cripi	10th Green C (0-0.5)	11/18/2021	10th Green		79.0
e ld ted, Des	11th Green C (0-0.5)	11/18/2021	11th Green		161.0
mpl	12th Green C (0-0.5)	11/18/2021	12th Green		59.8
Sa	18th Green C (0-0.5)	11/18/2021	18th Green		66.5
Residential	I/Recreational Soil Refe	erence Value (SRV	() (mg/kg)	9	2.7
Commercia	ommercial/Industrial Soil Reference Value (SRV) (mg/kg)				3.1
creening S	Soil Leaching Value (SL	5.8	3.3		

Notes

 $\label{eq:minnesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg} = \mbox{Milligrams per kilogram}.$

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Residential/Recreational SRV

Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-1E (0-0.5)	6/7/2020		Tee Box		3.9
	SS-1E (1-1.5)	6/7/2020		ree box		0.11
	SS-1J (0-0.5)	6/7/2020	9th Hole	Tee Box		5.1
	SS-1J (1-1.5)	6/7/2020	Stirriole			0.087
	SS-1K (0-0.5)	6/7/2020		Rough adjacent to Tee Box		1.1
	SS-1K (1-1.5)	6/7/2020		nough adjucent to ree box		0.1
	SS-5J (0-0.5)	6/12/2020		Tee Box		5.5
	SS-5J (1-1.5)	6/12/2020		ree box		2.8
	SS-5K (0-0.5)	6/12/2020				0.055 ^[M1]
	Dup-14-06122020 (SS-5K (0-0.5)	6/12/2020	6th Hole	Тее Вох		0.053
	SS-5K (1-1.5)	6/12/2020				0.24
	SS-5M (0-0.5)	6/12/2020		Drainage Area adjacent to		0.13
escription	SS-5M (1-1.5)	6/12/2020		Tee Box		0.3
	SS-8 (0-0.5)	05/01/2019	10th Hole			6.8
ion De	SS-8 (0-0.5)	05/10/2019	10th Hole	Tee Box		0.030
e Identifier, Date Collected, and Location Description	SS-9 (0-0.5)	05/01/2019	14th Hole	Tee Box		0.45
	SS-11 (0-0.5)	5/10/2019	11th Hole	Tee Box		5.2
	SS-15 (0-0.5)	5/10/2019	5th Hole	Tee Box		7.0
	SS-20 (0-0.5)	6/9/2020		Tee Box		0.021
Date	SS-20 (1-1.5)	6/9/2020		ree box		0.07
fier,	SS-20B (0-0.5)	6/9/2020				0.33
Identi	Dup-3-06092020 (SS-20B (0-0.5)	6/9/2020		Rough adjacent to Tee Box		0.26
Sample	SS-20B (1-1.5)	6/9/2020	14th Hole			0.11
Saı	SS-20C (0-0.5)	6/9/2020		Tee Box		6.8
	SS-20C (1-1.5)	6/9/2020		тее вох		0.023
	SS-20D (0-0.5)	6/9/2020		Rough adjacent to Tee Box		2.8
	SS-20D (1-1.5)	6/9/2020		Hough adjacent to ree box		0.068 ^[M1]
	SS-21C (0-0.5) ^[a]	6/11/2020		Tee Box		0.6
	SS-21C (1-1.5) ^[a]	6/11/2020				0.062
	SS-21D (0-0.5)	6/11/2020				0.53
	Dup-10-06112020 (SS-21D (0-0.5)	6/11/2020		Tee Box		0.54
	SS-21D (1-1.5)	6/11/2020				0.19
	SS-21E (0-0.5)	6/11/2020	16th Hole	Tee Box		0.047
	SS-21E (1-1.5)	6/11/2020		тее вох		<0.022
	SS-21F (0-0.5)	6/11/2020		Tee Box		0.82
	SS-21F (1-1.5)	6/11/2020		TCC DOX		0.25
	SS-21G (0-0.5)	6/11/2020		Rough adjacent to Tee Box		0.56
	SS-21G (1-1.5) 6/11/2020 Rough adjacent to Tee Box				0.051	
	Reside	ential/Recreationa	l Soil Reference Value	(SRV) (mg/kg)	9	2.7
	Comi	mercial/Industrial	Soil Reference Value (SRV) (mg/kg)	9	3.1
		Screening Soil L	eaching Value (SLV) (m	ng/kg)	5.8	3.3

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \,SS-21C \,\,(0-0.5) \,\,and \,\,SS-21C \,\,(1-1.5) \,\,were \,\,mislabeled \,\,by \,\,the \,\,lab \,\,as \,\,SS-21K \,\,(0-0.5) \,\,and \,\,SS-21K \,\,(1-1.5), \,\,respectively.$
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Residential/Recreational SRV

Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Con	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
		7440-38-2	7439-97-6			
	SS-22 (0-0.5)	6/9/2020		Rough adjacent to Tee Box		1.4
	SS-22 (1-1.5)	6/9/2020		Rough adjacent to ree box		0.038
	SS-22B (0-0.5)	6/9/2020				16.9
	Dup-6-06092020 (SS-22B (0-0.5)	6/9/2020				25.0
	SS-22B (1-1.5)	6/9/2020				109
	SS-22B N (0-0.5)	11/17/2021				0.19 ^[M1]
	SS-22B N (1-1.5)	11/17/2021	11th Hole	Tee Box		0.028
	SS-22B N (2-2.5)	11/17/2021	TITII HOIE	тее вох		0.028
	SS-22B E (0-0.5)	11/17/2021				0.37
	SS-22B E (1-1.5)	11/17/2021	_			0.049
	SS-22B S (0-0.5)	11/17/2021				2.2
	SS-22B S (1-1.5)	11/17/2021				0.097
	SS-22C (0-0.5)	6/9/2020				4.5
	SS-22C (1-1.5)	6/9/2020		Tee Box		0.22
	SS-23E (0-0.5)	6/10/2020				4.8
	SS-23E (1-1.5)	6/10/2020		Tee Box		1.0
	SS-23F (0-0.5)	6/10/2020				0.042
	SS-23F (1-1.5)	6/10/2020	3rd Hole	Tee Box		0.035
_	SS-23G (0-0.5)	6/10/2020				8.0
ptior	SS-23G (1-1.5)	6/10/2020		Tee Box		0.11
escri	SS-24 (0-0.5)	6/12/2020				0.023
ollected, and Location Description	SS-24 (1-1.5)	6/12/2020		Tee Box		<0.022
	SS-24D (0-0.5)	6/12/2020	Driving Range			<0.022
	SS-24D (1-1.5)	6/12/2020		Tee Box		<0.020
ed, ai	SS-38 (0-0.5)	6/7/2020				0.056
llecte	SS-38 (1-1.5)	6/7/2020	2nd Hole	Tee Box		0.05
	SS-39 (0-0.5)	6/10/2020				4.4
, Dat	SS-39 (1-1.5)	6/10/2020	4th Hole	Tee Box		<0.023
tifier	SS-40 (0-0.5)	6/11/2020				0.4
lden	SS-40 (1-1.5)	6/11/2020	7th Hole	Tee Box		0.036
Sample Identifier, Date C	SS-41 (0-0.5)	6/7/2020				6.4
San	Dup-2-06072020	6/7/2020	8th Hole	Tee Box		4.6
	(SS-41 (0-0.5)		Stirrioic	TCC BOX		
	SS-41 (1-1.5)	6/7/2020				1.6
	SS-42 (0-0.5)	6/10/2020				0.11
	SS-42 (1-1.5)	6/10/2020		Tee Box		7.2
	SS-42 (2-2.5)	11/17/2021				1.3 ^[M1]
	SS-42 N (0-0.5)	11/17/2021	12th Hole			0.11
	SS-42 N (1-1.5)	11/17/2021				5.1
	SS-42 S (0-0.5)	11/17/2021				0.37
	SS-42 S (1-1.5)	11/17/2021				0.66
	SS-43 (0-0.5)	6/9/2020	13th Hole	Tee Box		2.7
	SS-43 (1-1.5)	6/9/2020				0.16
	SS-44 (0-0.5)	6/10/2020	15th Hole	Tee Box		11.7
	SS-44 (1-1.5)	6/10/2020				0.13
	SS-45 (0-0.5)	6/10/2020	17th Hole	Tee Box		0.069
	SS-45 (1-1.5)	6/10/2020				0.028
	SS-46 (0-0.5)	6/10/2020		Tee Box		1.3
	SS-46 (1-1.5)	6/10/2020	18th Hole			0.043
	SS-47 (0-0.5)	6/10/2020		Tee Box		0.054
	SS-47 (1-1.5)	6/10/2020				0.025
	Resid	ential/Recreation	al Soil Reference Value	(SRV) (mg/kg)	9	2.7
	Com	mercial/Industria	Soil Reference Value (SRV) (mg/kg)	9	3.1
		Screening Soil I	eaching Value (SLV) (m	ng/kg)	5.8	3.3

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.</p>
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \,SS-21C \,\,(0-0.5) \,\,and \,\,SS-21C \,\,(1-1.5) \,\,were \,\,mislabeled \,\,by \,\,the \,\,lab \,\,as \,\,SS-21K \,\,(0-0.5) \,\,and \,\,SS-21K \,\,(1-1.5), \,\,respectively.$
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data **Former Hillcrest Golf Course** Saint Paul, Minnesota Project B1903316.00

		Com	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
		7440-38-2	7439-97-6			
	SS-1I (0-0.5)	6/7/2020				6.7 ^[M6]
	SS-1I (1-1.5)	6/7/2020				0.2
	SS-1IE (0-0.5)	11/16/2021	046 11-1-	Falmoni		7.1
	SS-1IN (0-0.5)	11/16/2021	8th Hole	Fairway		2.4
	SS-1IS (0-0.5)	11/16/2021				4.6 ^[P6]
	SS-1IW (0-0.5)	11/16/2021				4.4
	SS-3J (0-0.5)	6/9/2020				4.0
	SS-3J (1-1.5)	6/9/2020				0.14
	SS-3 J N (0-0.5)	11/17/2021	13th Hole	Fairnian		2.5
	SS-3 J E (0-0.5)	11/17/2021		Fairway		3.8
	SS-3 J S (0-0.5)	11/17/2021				3.9
	SS-3 J W (0-0.5)	11/17/2021				3.7
L C	Dup-4-06092020 (SS-3M (0-0.5)	6/9/2020		Fairway		1.2
riptic	SS-3M (1-1.5)	6/9/2020		,		0.043
Desc	SS-4B (0-0.5)	6/11/2020		Frings of Croon		46.0
ion [SS-4B (1-1.5)	6/11/2020		Fringe of Green		0.27
ocat.	SS-4D (0-0.5)	6/11/2020		Fringe of Fairway		3.6
nd L	SS-4D (1-1.5)	6/11/2020		Fringe of Fairway		0.046
Sample Identifier, Date Collected, and Location Description	SS-4E (0-0.5)	6/11/2020		<u>.</u> .		3.4
	SS-4E (1-1.5)	6/11/2020		Fairway		0.12
	SS-4F (0-0.5)	6/11/2020		Edward of Falmonia		0.13
r, Da	SS-4F (1-1.5)	6/11/2020		Fringe of Fairway		<0.023
ntifie	SS-5D (0-0.5)	6/12/2020		Fairnian		5.6
lder	SS-5D (1-1.5)	6/12/2020	Cab IIala	Fairway		0.035
mple	SS-5E (0-0.5)	6/12/2020	5th Hole	Fairner		2.3
Sal	SS-5E (1-1.5)	6/12/2020		Fairway		0.053
	SS-10 (0-0.5)	05/01/2019		Fairway - Low Area		4.7
	SS-10B (0-0.5)	6/9/2020		Falmoni		3.7
	SS-10B (1-1.5)	6/9/2020	13th Hole	Fairway		0.04
	SS-10C (0-0.5)	6/9/2020		Edward of Falcons		1.7
	SS-10C (1-1.5)	6/9/2020		Fringe of Fairway		<0.023
	SS-10F (0-0.5)	6/9/2020				2.3
	SS-10F (1-1.5)	6/9/2020		Fringe of Fairway		0.22
	Dup-5-06092020 (SS-10F (1-1.5)	6/9/2020		0		0.61
	SS-10G (0-0.5)	6/9/2020	10th Hole	Falmoni		2.8
	SS-10G (1-1.5)	6/9/2020		Fairway		0.57
	SS-10H (0-0.5)	6/9/2020	ļ			3.5
	SS-10H (1-1.5)	6/9/2020		Fairway		<0.023
sidentia	al/Recreational Soil Re	ference Value (SRV) (mg/kg)		9	2.7
mmerc	cial/Industrial Soil Refe	rence Value (SRV) (mg/kg)		9	3.1
	s Soil Leaching Value (S	1) / / m a / k a \			5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013. mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.

[a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

 $[M6] \ Matrix \ spike \ and \ Matrix \ spike \ duplicate \ recovery \ not \ evaluated \ against \ control \ limits \ due \ to \ sample \ dilution.$

Exceeds Residential/Recreational SRV

Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-12 (0-0.5)	5/10/2019	18th Hole	Fairway		5.0
	SS-13 (0-0.5)	5/10/2019	11th Hole	Fairway		5.1
	SS-13B (0-0.5)	6/9/2020		Fairway		3.0
	SS-13B (1-1.5)	6/9/2020	13th Hole	raii way		0.08
	SS-14 (0-0.5)	5/10/2019		Fairway - Low Area		4.4
	SS-14B (0-0.5)	6/9/2020		Fairway		4.0
	SS-14B (1-1.5)	6/9/2020	11th Hole	Fall Way		0.14
	SS-14C (0-0.5)	6/9/2020	THITTOLE	Fringe of Fairway		1.7
	SS-14C (1-1.5)	6/9/2020		Trilige Of Fall Way		0.2
	SS-16 (0-0.5)	5/10/2019				4.5
	SS-16B (0-0.5)	6/11/2020		Fringe of Fairway		1.1
	SS-16B (1-1.5)	6/11/2020	5th Hole			0.2
	SS-16C (0-0.5)	6/11/2020		Fringe of Fairway		1.2
	SS-16C (1-1.5)	6/11/2020		Thinge of Fall way		<0.023
_	SS-17E (0-0.5)	6/10/2020	15th Hole	Fairway		2.4
iptio	SS-17E (1-1.5)	6/10/2020	1501111016	r an way		0.022
escr	SS-17G (0-0.5)	6/10/2020				16.5
on D	SS-17G (1-1.5)	6/10/2020				0.21
ocati	SS-17G N (0-0.5)	11/17/2021	12th Hole	Fairway		0.77
nd L	SS-17G E (0-0.5)	11/17/2021	12tii Hole	rali way		1.3
e Collected, and Location Description	SS-17G S (0-0.5)	11/17/2021				0.098
	SS-17G W (0-0.5)	11/17/2021				0.44
	SS-17I (0-0.5)	6/10/2020		Fringe of Fairway		3.3
, Dat	SS-17I (1-1.5)	6/10/2020	- 11th Hole -	Trilige Of Fall Way		0.56
tifier	SS-17J (0-0.5)	6/10/2020		Fairway		3.8
lden	SS-17J (1-1.5)	6/10/2020		r an way		0.16
Sample Identifier, Dat	SS-18B (0-0.5)	6/7/2020		Fringe of Fairway		3.1
Sar	SS-18B (1-1.5)	6/7/2020		Tringe of Fail way		2.7
	SS-18C (0-0.5)	6/7/2020		Fairway		4.1
	Dup-1-06072020	6/7/2020	1st Hole			0.85
	(SS-18C (0-0.5) SS-18C (1-1.5)	6/7/2020				0.11
	SS-18D (0-0.5)	6/7/2020		Fringe of Fairway		0.8
	SS-18D (1-1.5)	6/7/2020				0.042
	SS-19 (0-0.5)	6/10/2020				1.1
	SS-19 (1-1.5)	6/10/2020		Rough adjacent to Fairway		0.12
	SS-19B (0-0.5)	6/10/2020				3.1
	SS-19B (1-1.5)	6/10/2020				0.65
	SS-19BE (0-0.5)	11/16/2021	3rd Hole	Rough adjacent to Fairway		2.3
	SS-19BN (0-0.5)	11/16/2021		5 ,		2.9
	SS-19BS (0-0.5)	11/16/2021				2.8
	SS-19C (0-0.5)	6/10/2020				3.0
	SS-19C (1-1.5)	6/10/2020		Fairway		0.3
a!al		L	(m = /l+=)			
siaentia	al/Recreational Soil Ref	rerence value (SRV)	(mg/kg)		9	2.7
mmerc	ial/Industrial Soil Refer	rence Value (SRV) (r	ng/kg)		9	3.1

Notes

 ${\bf Minnesota\ Pollution\ Control\ Agency\ (MPCA)\ SRVs\ updated\ June\ 2009\ and\ SLVs\ updated\ June\ 2013.}$

- mg/kg = Milligrams per kilogram.
 < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix\ spike\ recovery\ exceeded\ QC\ limits.\ Batch\ accepted\ based\ on\ laboratory\ control\ sample\ (LCS)\ recovery.$

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Cor	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
		7440-38-2	7439-97-6			
	SS-19D (0-0.5)	6/10/2020		Fairman		2.0
	SS-19D (1-1.5)	6/10/2020	والمالية	Fairway		0.092
	SS-19E (0-0.5)	6/10/2020	3rd Hole	Entere of Fatoure		0.67
	SS-19E (1-1.5)	6/10/2020		Fringe of Fairway		<0.021
	SS-21 (0-0.5)	6/11/2020	45.1 1			4.5
	SS-21 (1-1.5)	6/11/2020	15th Hole	Fairway		0.031
	SS-22E (0-0.5)	6/9/2020		Davida Adia and ta Esimon		2.2
	SS-22E (1-1.5)	6/9/2020		Rough Adjacent to Fairway		0.15
	SS-22F (0-0.5)	6/9/2020		Fairman		3.0
	SS-22F (1-1.5)	6/9/2020	4245 11-1-	Fairway		0.072
	SS-22G (0-0.5)	6/9/2020	13th Hole	Fairman		4.7
	SS-22G (1-1.5)	6/9/2020		Fairway		0.073
	SS-22H (0-0.5)	6/9/2020				1.8
	SS-22H (1-1.5)	6/9/2020		Fringe of Fairway		0.08
	SS-23J (0-0.5)	6/10/2020				0.49
<u> </u>	SS-23J (1-1.5)	6/10/2020	4=11 1	Fairway		0.39
iptio	SS-23K (0-0.5)	6/10/2020	17th Hole			1.4
)escr	SS-23K (1-1.5)	6/10/2020		Fairway		0.029
ion	SS-24C (0-0.5)	6/12/2020				0.033
ocat	SS-24C (1-1.5)	6/12/2020		Fairway		<0.020
ollected, and Location Description	SS-24E (0-0.5)	6/12/2020				0.25
	SS-24E (1-1.5)	6/12/2020	Driving Range	Fairway		<0.021
ollect	SS-24F (0-0.5)	6/12/2020	Driving Range			0.024
Sample Identifier, Date Cc	Dup-15-06122020 (SS-24F (0-0.5)	6/12/2020		Fairway		<0.023
fier, –	SS-24F (1-1.5)	6/12/2020				<0.021
entil	SS-48 (0-0.5)	6/7/2020				8.2
ole Id	SS-48 (1-1.5)	6/7/2020				0.073
Samp	SS-48N (0-0.5)	11/16/2021	2nd Hole	Fairway		4.7
0,	SS-48S (0-0.5)	11/16/2021				3.7
	SS-50 (0-0.5)	6/7/2020				3.5
	SS-50 (1-1.5)	6/7/2020	7th Hole	Fairway		0.047
	SS-51 (0-0.5)	6/10/2020	4611 11 1			2.8
	SS-51 (1-1.5)	6/10/2020	16th Hole	Rough adjacent to Fairway		0.21
	FW1-DU1 (0-0.5)	11/12/2021		•		3.1
	FW1-DU2 (0-0.5) DUP-8 (FW1-DU2(0-0.5)	11/12/2021 11/12/2021		1st Fairway		5.4
	FW2-DU1 (0-0.5)	11/11/2021		2nd Fairway		2.6
	FW3-DU1 (0-0.5) FW3-DU2 (0-0.5)	11/11/2021 11/11/2021				3.2 3.6
	FW3-DU3 (0-0.5)	11/11/2021		3rd Fairway		3.1
	DUP-5 (FW3-DU3(0-0.5)	11/11/2021				3.3
	FW4-DU1 (0-0.5) DUP-3	11/09/2021				2.5
	(FW4-DU1(0-0.5))	11/09/2021		4th Fairway		3.0
	FW4-DU2 (0-0.5)	11/09/2021		•		2.4
	FW4-DU3 (0-0.5)	11/09/2021				1.9
	al/Recreational Soil Ref				9	2.7
	ial/Industrial Soil Refe		(mg/kg)		9	3.1
creening	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

Notes

 $\label{eq:minesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg} = \mbox{Milligrams per kilogram}.$

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter	Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.	7440-38-2	7439-97-6
	FW5-DU1 (0-0.5)	11/08/2021			2.2
	FW5-DU2 (0-0.5)	11/08/2021			2.4
	DUP-2	11/08/2021	5th Fairway		2.4
	(FW5-DU2 (0-0.5))	11/08/2021			2.4
	FW5-DU3 (0-0.5)	11/08/2021			6.8
	FW6-DU1 (0-0.5)	11/08/2021			4.4 ^[1]
	FW6-DU2 (0-0.5)	11/08/2021			6.8
	DUP-1	44 /00 /2024	6th Fairway		20.2
	(FW6-DU2 (0-0.5))	11/08/2021			20.2
	FW6-DU3 (0-0.5)	11/08/2021			1.9
	FW7-DU1 (0-0.5)	11/11/2021			2.8
	FW7-DU2 (0-0.5)	11/11/2021	7th Fairway		3.0
	FW7-DU3 (0-0.5)	11/11/2021			2.9
	FW8-DU1 (0-0.5)	11/12/2021			5.2
	FW8-DU2 (0-0.5)	11/12/2021	-1 - 1		5.4
	FW8-DU3 (0-0.5)	11/12/2021	8th Fairway		1.8
	DUP-7	11/12/2021			3.5
	(FW8-DU3(0-0.5))	44 /42 /2024	Oth Fairman		0.24
L C	FW9-DU1 (0-0.5) FW10-DU1 (0-0.5)	11/12/2021	9th Fairway		0.31
ptic	FW10-D01 (0-0.5)	11/10/2021 11/10/2021	10th Fairway		11.9 3.4
scri	FW10-DU2 (0-0.5)	11/10/2021	10th Fall Way		2.8
De	FW11-DU1 (0-0.5)	11/09/2021			3.3
ioi	FW11-DU2 (0-0.5)	11/09/2021	11th Fairway		2.3
cat	FW11-DU3 (0-0.5)	11/10/2021	IIIII ali way		2.7 [1]
으	FW12-DU1 (0-0.5)	11/09/2021	12th Fairway		1.1
anc	FW12-D01 (0-0.5)	11/10/2021	12tii Fali Way		15.1
Sample Identifier, Date Collected, and Location Description	FW13-DU2 (0-0.5)	11/10/2021			2.9
	DUP-4		13th Fairway		2.3
8	(FW13-DU2(0-0.5))	11/10/2021	13.111.111.113,		2.6
te (FW13-DU3 (0-0.5)	11/10/2021			2.9
Da	FW14-DU1 (0-0.5)	11/10/2021			3.5
ier,	FW14-DU2 (0-0.5)	11/10/2021	14th Fairway		3.1
ı <u>f</u>	FW14-DU3 (0-0.5)	11/10/2021	·		3.5
lde	FW15-DU1 (0-0.5)	11/09/2021	15th Fairway		1.9
ple	FW15-DU2 (0-0.5)	11/09/2021	15tii Fali Way		4.7
au	FW16-DU1 (0-0.5)	11/09/2021	16th Fairway		3.3
S	FW17-DU1 (0-0.5)	11/11/2021			1.4
	FW17-DU2 (0-0.5)	11/11/2021	17th Fairway		2.7
	FW17-DU3 (0-0.5)	11/11/2021			1.2
	FW18-DU1 (0-0.5)	11/11/2021			7.6
	DUP-6	11/11/2021	40th Faimner		3.4
	(FW18-DU1(0-0.5)		18th Fairway		2.0
	FW18-DU2 (0-0.5) FW18-DU3 (0-0.5)	11/11/2021 11/11/2021			3.6 1.7
	3rd Green C (0-0.5)	11/11/2021	3rd Green		89.2
	6th Green C (0-0.5)	11/18/2021	6th Green		18.6
	7th Green C (0-0.5)	11/18/2021	7th Green		102.0
	10th Green C (0-0.5)	11/10/2021	7 til Gleen		102.0
	10th Green C (0- 0.5)	11/18/2021	10th Green		79.0
	11th Green C (0-				
	0.5)	11/18/2021	11th Green		161.0
	12th Green C (0-				
	0.5)	11/18/2021	12th Green		59.8
	18th Green C (0-	11/18/2021	18th Green		66.5
identi	0.5) al/Recreational Soil Ref	erence Value (SRV)	(mg/kg)	9	2.7
nmerc	cial/Industrial Soil Refer	ence Value (SRV) (n	ng/kg)	9	3.1
	g Soil Leaching Value (SL	\/\ (ma/ka)		5.8	3.3

Notes

 $\label{eq:minnesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ \mbox{mg/kg = Milligrams per kilogram}.$

- $\,$ $\!<$ = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \ SS-21C \ (0-0.5) \ and \ SS-21C \ (1-1.5), \ were \ mislabeled \ by \ the \ lab \ as \ SS-21K \ (0-0.5) \ and \ SS-21K \ (1-1.5), \ respectively.$

[M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Residential/Recreational SRV
Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		Arsenic, Total (mg/kg)	Mercury, Tota (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-1C (0-0.5)	6/7/2020	OIL III.	Parallel Parallel Cons	3.2	0.08
	SS-1C (1-1.5)	6/7/2020	8th Hole	Rough adjacent to Green	3.7	0.057
	SS-1D (0-0.5)	6/7/2020	Oth Hala	Davido mara Cidaviallo		0.039
	SS-1D (1-1.5)	6/7/2020	9th Hole	Rough near Sidewalk		0.028
	SS-1F (0-0.5)	6/7/2020			7.4	6.6
	SS-1F (1-1.5)	6/7/2020			2.9	0.057
	SS-1FE (0-0.5)	11/16/2021		De el constitue di		0.94
	SS-1FN (0-0.5)	11/16/2021		Rough near Sidewalk		0.84
	SS-1FS (0-0.5)	11/16/2021				0.026
	SS-1FW (0-0.5)	11/16/2021	8th Hole			16.1
	SS-1G (0-0.5)	6/7/2020		Can d Turn		<0.022
uo	SS-1G (1-1.5)	6/7/2020	1	Sand Trap		0.028
ripti	SS-1H (0-0.5)	6/7/2020		De la l'accepta Carl Tarr		0.13
Desc	SS-1H (1-1.5)	6/7/2020		Rough adjacent to Sand Trap		<0.021
ation	SS-1K (0-0.5)	6/7/2020	OIL III.	D. J. Brandto T. D.		1.1
T Loc	SS-1K (1-1.5)	6/7/2020	9th Hole	Rough adjacent to Tee Box		0.1
I, anc	SS-3G (0-0.5)	6/9/2020		6 17		0.15
Sample Identifier, Date Collected, and Location Description	SS-3G (1-1.5)	6/9/2020		Sand Trap		<0.022
	SS-3I (0-0.5)	6/9/2020	13th Holo	De als discounts Cons		0.92
Date	SS-3I (1-1.5)	6/9/2020		Rough adjacent to Green		0.051
ifier,	SS-3K (0-0.5)	6/9/2020	13th Hole			0.9
ldent	SS-3K (1-1.5)	6/9/2020		Rough		0.1
ıple I	SS-3L (0-0.5)	6/9/2020		D l.		1.4
San	SS-3L (1-1.5)	6/9/2020		Rough		0.054
	SS-4C (0-0.5)	6/11/2020				2.5 ^[M1]
	Dup-11-06112020 (SS-4C 0-0.5)	6/11/2020	4th Hole	Rough		2.1
	SS-4C (1-1.5)	6/11/2020				0.24
	SS-5F (0-0.5)	6/12/2020				1.9
	Dup-13-06122020 (SS-5F (0-0.5)	6/12/2020		Rough		2.0
	SS-5F (1-1.5)	6/12/2020				<0.019
	SS-5H (0-0.5)	6/12/2020	5th Hole	Sand Trap		<0.021
	SS-5H (1-1.5)	6/12/2020		Sanu map		0.025
	SS-5I (0-0.5)	6/12/2020		Rough		1.3
	SS-5I (1-1.5)	6/12/2020		vonăii		0.11
dentia	al/Recreational Soil Ref	erence Value (SRV)	(mg/kg)		9	2.7
nmerc	ial/Industrial Soil Refer	ence Value (SRV) (r	mg/kg)		9	3.1
		5.8	3.3			

Notes

 $\label{eq:minnesota} \mbox{Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.} \\ mg/kg = \mbox{Milligrams per kilogram}.$

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

[M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Exceeds Residential/Recreational SRV
Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Com	pound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-5L (0-0.5)	6/12/2020	C+h Hala	Davidh		0.16
	SS-5L (1-1.5)	6/12/2020	6th Hole	Rough		<0.022
	SS-10D (0-0.5)	6/9/2020	13th Hole	Rough		0.87
	SS-10D (1-1.5)	6/9/2020	13th Hole	Kougii		0.071
	SS-10E (0-0.5)	6/9/2020	10th Hole	Rough		0.22
	SS-10E (1-1.5)	6/9/2020	Totti Hole	Nougii		<0.022
	SS-13C (0-0.5)	6/9/2020		Rough		<0.023
	SS-13C (1-1.5)	6/9/2020	13th Hole	Nougii		0.087
	SS-14 (0-0.5)	5/10/2019		Fairway - Low Area		4.4
	SS-14B (0-0.5)	6/9/2020		Fairway		4.0
	SS-14B (1-1.5)	6/9/2020		Fairway		0.14
	SS-14C (0-0.5)	6/9/2020	11th Hole	Frings of Fairway		1.7
	SS-14C (1-1.5)	6/9/2020	TIth Hole	Fringe of Fairway		0.2
	SS-14D (0-0.5)	6/9/2020		Daniele		0.093
otion	SS-14D (1-1.5)	6/9/2020		Rough		<0.024
llected, and Location Description	SS-15 (0-0.5)	5/10/2019		Tee Box		7.0
on De	SS-16 (0-0.5)	5/10/2019				4.5
ocati	SS-16B (0-0.5)	6/11/2020		Fairway		1.1
nd Lo	SS-16B (1-1.5)	6/11/2020				0.2
ed, a	SS-16C (0-0.5)	6/11/2020	5th Hole	_		1.2
ollect	SS-16C (1-1.5)	6/11/2020		Fringe of Fairway		<0.023
ıte Co	SS-16D (0-0.5)	6/11/2020				1.2
er, Da	SS-16D (1-1.5)	6/11/2020		Rough		0.13
Sample Identifier, Date Col	SS-17 (0-0.5)	6/10/2020				0.65
e Ide	SS-17 (1-1.5)	6/10/2020				10.0
ampl	SS-17 (2-2.5)	11/17/2021				0.035
S	SS-17 N (0-0.5)	11/17/2021		Rough next to sand trap		0.52
	SS-17 N (1-1.5)	11/17/2021				1.3
	SS-17 S (0-0.5)	11/17/2021	16th Hole			0.3
	SS-17 S (1-1.5)	11/17/2021				1.6
	SS-17B (0-0.5)	6/10/2020				0.05
	SS-17B (1-1.5)	6/10/2020		Sand Trap		0.023
	SS-17C (0-0.5)	6/10/2020				0.088
	SS-17C (1-1.5)	6/10/2020		Rough		0.041
	SS-17D (0-0.5)	6/10/2020				0.39
	SS-17D (1-1.5)	6/10/2020		Rough		0.028
	SS-17E (0-0.5)	6/10/2020				2.4
	SS-17E (1-1.5)	6/10/2020	15th Hole	Fairway		0.022
	SS-17F (0-0.5)	6/10/2020				0.16
	SS-17F (1-1.5)	6/10/2020		Rough		<0.023
Residentia	al/Recreational Soil Re	ference Value (SRV)	(mg/kg)		9	2.7
Commerci	ial/Industrial Soil Refe	rence Value (SRV) (ı	mg/kg)		9	3.1
	Soil Leaching Value (S				5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013. mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[M1] \ Matrix \ spike \ recovery \ exceeded \ QC \ limits. \ Batch \ accepted \ based \ on \ laboratory \ control \ sample \ (LCS) \ recovery.$
- $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Exceeds Residential/Recreational SRV
Exceeds Commercial/Industrial SRV

Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Con	npound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-17H (0-0.5)	6/10/2020				1.0
	SS-17H (1-1.5)	6/10/2020	12th Hole	Rough near Sidewalk		0.12
	Dup-9-06102020 (SS-17H (1-1.5)	6/10/2020				0.12
	SS-18 (0-0.5)	6/7/2020				0.48
	SS-18 (1-1.5)	6/7/2020		Rough		0.054
	SS-18B (0-0.5)	6/7/2020				3.1
	SS-18B (1-1.5)	6/7/2020	1st Hole	Fringe of Fairway		2.7
	SS-18E (0-0.5)	6/7/2020				0.13
	SS-18E (1-1.5)	6/7/2020		Rough		<0.021
	SS-19 (0-0.5)	6/10/2020				1.1
	SS-19 (1-1.5)	6/10/2020		Rough adjacent to Fairway		0.12
	SS-19B (0-0.5)	6/10/2020				3.1
	SS-19B (1-1.5)	6/10/2020				0.65
	SS-19BE (0-0.5)	11/16/2021		Rough adjacent to Fairway		2.3
on	SS-19BN (0-0.5)	11/16/2021	3rd Hole			2.9
cripti	SS-19BS (0-0.5)	11/16/2021				2.8
Desc	SS-19F (0-0.5)	6/10/2020				0.35
ocation	Dup-8-06102020 (SS-19F (0-0.5)	6/10/2020		Rough		0.35
nd L	SS-19F (1-1.5)	6/10/2020				0.047
ted, a	SS-20B (0-0.5)	6/9/2020				0.33
Sample Identifier, Date Collected, and Location Description	Dup-3-06092020 (SS-20B (0-0.5)	6/9/2020	14th Hole	Rough adjacent to Tee Box		0.26
Date	SS-20B (1-1.5)	6/9/2020				0.11
ifier,	SS-20D (0-0.5)	6/9/2020		Dough adjacent to Too Day		2.8
ldent	SS-20D (1-1.5)	6/9/2020		Rough adjacent to Tee Box		0.068 ^[M1]
nple	SS-21B (0-0.5)	6/11/2020	454b 11-1-	Daviele		0.1
San	SS-21B (1-1.5)	6/11/2020	15th Hole	Rough		<0.023
	SS-21G (0-0.5)	6/11/2020	460 11.1	Donald Broad To D		0.56
	SS-21G (1-1.5)	6/11/2020	16th Hole	Rough adjacent to Tee Box		0.051
	SS-22 (0-0.5)	6/9/2020		- 1 0		1.4
	SS-22 (1-1.5)	6/9/2020		Rough adjacent to Tee Box		0.038
	SS-22D (0-0.5)	6/9/2020	11th Hole			0.077
	SS-22D (1-1.5)	6/9/2020		Rough		0.023
	SS-22E (0-0.5)	6/9/2020		David Albertain 5.1		2.2
	SS-22E (1-1.5)	6/9/2020		Rough Adjacent to Fairway		0.15
	SS-22I (0-0.5)	6/9/2020	13th Hole			0.066
	SS-22I (1-1.5)	6/9/2020		Rough		<0.023
	SS-23B (0-0.5)	6/10/2020		a !=		0.029
	SS-23B (1-1.5)	6/10/2020		Sand Trap		0.025
	SS-23C (0-0.5)	6/10/2020	2nd Hole			1.3
	SS-23C (1-1.5)	6/10/2020		Rough		0.086
esidentia	al/Recreational Soil Ref	erence Value (SRV	() (mg/kg)		9	2.7
ommerci	ial/Industrial Soil Refer	rence Value (SRV)	(mg/kg)		9	3.1
crooning	Soil Leaching Value (S	LV) (mg/kg)			5.8	3.3

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- $[a] = Samples \,SS-21C \,(0-0.5) \,and \,SS-21C \,(1-1.5) \,were \,mislabeled \,by \,the \,lab \,as \,SS-21K \,(0-0.5) \,and \,SS-21K \,(1-1.5), \,respectively.$
- $[M1] \ Matrix\ spike\ recovery\ exceeded\ QC\ limits.\ Batch\ accepted\ based\ on\ laboratory\ control\ sample\ (LCS)\ recovery.$
- [M6] Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

Table 11 Soil Arsenic and Mercury Analytical Results - All Data Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

		Co	mpound/Parameter		Arsenic, Total (mg/kg)	Mercury, Total (mg/kg)
			CAS No.		7440-38-2	7439-97-6
	SS-23B (0-0.5)	6/10/2020		Control		0.029
	SS-23B (1-1.5)	6/10/2020	2nd Hole	Sand Trap		0.025
tion	SS-23C (0-0.5)	6/10/2020	Zna Hole	Dough		1.3
Sample Identifier, Date Collected, and Location Description	SS-23C (1-1.5)	6/10/2020	1	Rough		0.086
n De	SS-23D (0-0.5)	6/10/2020		Dough adiacout to Too Day		2.3
catio	SS-23D (1-1.5)	6/10/2020	3rd Hole	Rough adjacent to Tee Box		0.091
od Lo	SS-23H (0-0.5)	6/10/2020	- 3rd Hole	Davidh		0.33
ed, ar	SS-23H (1-1.5)	6/10/2020	1	Rough		<0.022
llecte	SS-23I (0-0.5)	6/10/2020	17th Hole	Davidh		1.4
te Co	SS-23I (1-1.5)	6/10/2020	- 17th Hole	Rough		0.042
r, Dat	SS-49 (0-0.5)	6/15/2020	Eth Hala	Davidh		0.96
ıtifie	SS-49 (1-1.5)	6/15/2020	- 5th Hole	Rough		<0.022 [M1]
i Ider	SS-51 (0-0.5)	6/10/2020	16th Hole	Davidh adiacont to Fairmey		2.8
ımple	SS-51 (1-1.5)	6/10/2020	- 16th Hole	Rough adjacent to Fairway		0.21
SS	ST-6 (2-4)	04/12/2019	Between 13th Hole and 11th Hole	Rough	1.7	<0.020
	ST-10 (1-3)	04/12/2019	16th Hole	Rough East of Hole	2.0	0.027
Residentia	l/Recreational Soil Re	ference Value (SR	V) (mg/kg)		9	2.7
Commercia	al/Industrial Soil Refe	rence Value (SRV)	(mg/kg)		9	3.1
Screening	Soil Leaching Value (S	5.8	3.3			

Notes

Minnesota Pollution Control Agency (MPCA) SRVs updated June 2009 and SLVs updated June 2013.

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- --- = Not analyzed or calculated for this parameter or not applicable.
- [a] = Samples SS-21C (0-0.5) and SS-21C (1-1.5) were mislabeled by the lab as SS-21K (0-0.5) and SS-21K (1-1.5), respectively.
- [M1] Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- $[M6] \ Matrix\ spike\ and\ Matrix\ spike\ duplicate\ recovery\ not\ evaluated\ against\ control\ limits\ due\ to\ sample\ dilution.$

Exceeds Residential/Recreational SRV

Exceeds Commercial/Industrial SRV

Soil Analytical Results - Soil Borrow Area **Former Hillcrest Golf Course** St Paul, Minnesota Project B1903316.00

			Sample Identii	fier and Date Collect	ed		5 11 111		
Compound/Parameter	CAS No.	Borrow-N (0-0.5)	Borrow-N (1-1.5)	Borrow-S (0-0.5)	Borrow-S (1-1.5)	Trip Blank	Residential/ Recreational SRV	Commercial/ Industrial SRV	SLV
		, ,		· · · ·		· ·	(mg/kg)	(mg/kg)	(mg/kg)
		11/15/2021	11/15/2021	11/15/2021	11/15/2021	11/15/2021			
Volatile Organic Compounds (VOC	1	401	401	401	401	401	l		
All other reported VOCs Polycyclic Aromatic Hydrocarbons	(DAHs) (ma/ka)	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
Acenaphthene	83-32-9	<0.0121	<0.0113	<0.0110	<0.0116		450	6,800	81
Acenaphthylene	208-96-8	<0.0121	<0.0113	<0.0110	<0.0116		NE	NE	NE NE
Anthracene	120-12-7	0.0148	0.0118	<0.0110	<0.0116		2,800	42,000	1,300
Benz(a)anthracene	56-55-3	0.0754	0.0387	<0.0110	<0.0116		cPAH	cPAH	сРАН
Benzo(b)fluoranthene	205-99-2	0.125	0.0553	<0.0110	<0.0116		сРАН	сРАН	сРАН
Benzo(k)fluoranthene	207-08-9	0.0547	0.0238	<0.0110	<0.0116		сРАН	сРАН	сРАН
Benzo(a)pyrene	50-32-8	0.0894	0.0398	<0.0110	<0.0116		сРАН	сРАН	сРАН
Benzo(g,h,i)perylene	191-24-2	0.0687	0.0281	<0.0110	<0.0116		NE NE	NE	NE NE
Chrysene	218-01-9	0.0978	0.0459	<0.0110	<0.0116		сРАН	сРАН	сРАН
Dibenz(a,h)anthracene	53-70-3	0.0142	<0.0113	<0.0110	<0.0116		сРАН	сРАН	сРАН
Fluoranthene	206-44-0	0.178	0.101	<0.0110	<0.0116		200	2,700	670
Fluorene	86-73-7	<0.0121	<0.0113	<0.0110	<0.0116		390	5,800	110
Indeno(1,2,3-cd)pyrene	193-39-5	0.0721	0.0303	<0.0110	<0.0116		cPAH	cPAH	сРАН
2-Methyl naphthalene	91-57-6	0.0721	0.0303	<0.0110 			39	580	NE NE
Naphthalene	91-20-3	<0.0121	<0.0113	<0.0110	<0.0116		81	280	4.5
Phenanthrene	85-01-8	0.0581	0.0488	<0.0110	<0.0116		NE NE	NE NE	NE
Pyrene	129-00-0	0.131	0.0731	<0.0110	<0.0116		220	3,200	440
All other reported PAHs		<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
BaP Equivalent ^[c]		0.13	0.1	0.0	0.0	0.0	2 ^{BTV}	23	1.4
Metals (mg/kg)		0.120	<u> </u>	0.0	5.0	VII.	2		2
Arsenic, Total	7440-38-2	4.1	3.5	3.3	3.3		9 ^{BTV}	9 ^{BTV}	5.8
Barium, Total	7440-39-3	68.6	57.7	64.6	59.0		3,000	41,000	1,700
Cadmium, Total	7440-43-9	0.49	0.34	0.17	0.18		1.6	23	8.8
Chromium, Total ^[e]	7440-47-3	29.6	20.9	19.9	18.4		23,000/11 ^[e]	100,000/62 ^[e]	1,000,000,000/36 ^[e]
Lead, Total	7439-92-1	15.1	8.0	8.4	10.1		300	700	2,700
Mercury, Total	7439-97-6	1.2	1.0	0.51	0.11		3.1	3.1	3.3
Selenium, Total	7782-49-2	<0.56	<0.52	<0.52	<0.53		77	1,200	2.6
Silver, Total	7440-22-4	0.67	<0.52	<0.52	<0.53		77	1,200	7.9
Organochlorine Pesticides (mg/kg)								
Aldrin	309-00-2	<0.0101	<0.0019	<0.0093	<0.0097		0.45	2.6	NE
alpha-BHC	319-84-6	<0.0101	<0.0019	<0.0093	<0.0097		0.69	3.8	NE
beta-BHC	319-85-7	<0.0101	<0.0019	<0.0093	<0.0097		2.5	14	NE
gamma-BHC (Lindane)	58-89-9	<0.0101	<0.0019	<0.0093	<0.0097		4.3	25	NE
delta-BHC	319-86-8	<0.0101	<0.0019	<0.0093	<0.0097		NE	NE	NE
Chlordane (Technical)	57-74-9	<0.101	<0.0188	<0.0927	<0.0970		NE	NE	NE
alpha-Chlordane	5103-71-9	<0.0101	<0.0019	<0.0093	<0.0097		NE	NE	NE
gamma-Chlordane	5103-74-2	<0.0101	<0.0019	<0.0093	<0.0097		NE	NE	NE
4,4'-DDD	72-54-8	<0.0201	<0.0037	<0.0185	<0.0193		19	100	NE
4,4'-DDE	72-55-9	0.0809	0.0886	0.024	<0.0193		22	130	NE
4,4'-DDT	50-29-3	<0.0201	0.0128	<0.0185	<0.0193		7.3	87	NE
Dieldrin	60-57-1	<0.0201	<0.0037	<0.0185	<0.0193		0.11	1.5	NE
Endosulfan I	959-98-8	<0.0101	<0.0019	<0.0093	<0.0097		NE	NE	NE
Endosulfan II	33213-65-9	<0.0201	<0.0037	<0.0185	<0.0193		NE	NE	NE
Endosulfan sulfate	1031-07-8	<0.0201	<0.0037	<0.0185	<0.0193		NE	NE	NE
Endrin	72-20-8	<0.0201	<0.0037	<0.0185	<0.0193		4	54	NE
Endrin aldehyde	7421-93-4	<0.0201	<0.0037	<0.0185	<0.0193		NE	NE	NE
Endrin ketone	53494-70-5	<0.0201	<0.0037	<0.0185	<0.0193		NE	NE	NE
Heptachlor	76-44-8	<0.0101	<0.0019	<0.0093	<0.0097		1.6	8.9	NE
Heptachlor epoxide	1024-57-3	<0.0101	<0.0019	<0.0093	<0.0097		0.28	4.2	NE
Methoxychlor	72-43-5	<0.101	<0.0188	<0.0927	<0.0970		NE	NE	NE
Toxaphene	8001-35-2	<0.302	<0.0563	<0.277	<0.290		4.1	23	NE
All other reported organochlorine	r	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td></rl<>			
Petroleum Parameters (mg/kg)					f41	ı	N	1PCA Unreg. Fill Cr	iterion
DRO with Silica Gel Clean-up		<10.2	<8.9	<8.9	37.2 ^[1]			100 ^[f]	
Gasoline Range Organics (GRO)		<14.4	<12.7	<12.7	<13.4	<10.0		100 ^[f]	

Minnesota Pollution Control Agency (MPCA) Soil Reference Values (SRVs) updated in May 2021 and Soil Leaching Values (SLVs) updated in June 2013.

mg/kg = Milligrams per kilogram.

- < = Not detected at or above the laboratory reporting limit indicated.
- $\mbox{---}$ = Not analyzed or calculated for this parameter or not applicable.
- BTV = Background Threshold Value. BTVs are not calculated health based SRVs. The MPCA calculated SRVs were determined to be below background values (MPCA guidance document c-r1-05, April 2021).
- cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.
- NE = Regulatory limit not established for this parameter.
- RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.
- [c] = Benzo(a)pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; MPCA; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.
- [e] = Reported result is total chromium, regulatory limit for chromium III and chromium VI are provided.
- [f] = DRO/GRO concentrations greater than 100 mg/kg are not suitable for reuse as unregulated fill per MPCA Guidance Document c-rem1-01 "Best Management Practices for the Off-Site Reuse of Unregulated Fill" (February 2012).
- [1] [T6] High boiling point hydrocarbons are present in the sample.

Exceeds Residential/Recreational SRV Exceeds Commercial/Industrial SRV Exceeds 100 mg/kg for DRO/GRO

Water Analytical Results Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

<u></u>		1																				
									Samp	le Identifier, Dep	oth to Groundwa	ter, and Date Co	llected									l
		M	W-1	MW-2	DUP (MW-2)	MW-2	MV	V-3	Dup (MW-3)	SW-1	Irrigation Well	Maintenance Well	SW-1	SW-2	SW-3	SW-4	Duplicate 5008172020	Equipment Blank	Trip Blank	Trip Blank		
		07/10/2020	12/3/2021	07/10/2020	07/10/2020	12/3/2021	07/10/2020	12/3/2021	12/3/2021	07/10/2020	07/09/2020	07/09/2020	08/17/2020	08/17/2020	08/17/2020	08/17/2020	08/17/2020	07/09/2020	07/09/2020	07/10/2020	Drinking Water	l
Compound/Parameter	CAS No.	North Pa	arking Lot	N	∕laintenance Are	ea	S	outh End of Sit	e	Drainage Swale adjacent to Maintenance Area	Center of Site	Maintenance Area	Wetland Area East of 8th Hole	Central Irrigation Shed Pond	2nd Hole Pond	9th Hole Pond	9th Hold Pond	QAQC	QAQC	QAQC	Criteria (µg/L)	Source-Date
Volatile Organic Compounds (VOCs) (μg/L)																						
All reported VOCs		<rl< td=""><td></td><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>		<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>		<rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>					<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Semi-Volatile Organic Compounds (SVOCs)	(μg/L)																					
All reported SVOCs		<rl< td=""><td></td><td><rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>		<rl< td=""><td><rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td><rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>		<rl< td=""><td></td><td></td><td><rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>			<rl< td=""><td><rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td></td><td></td><td></td><td><rl< td=""><td></td><td></td><td></td><td></td></rl<></td></rl<>						<rl< td=""><td></td><td></td><td></td><td></td></rl<>				
BaP Equivalent ^[c]		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						0.0			0.1	HBV-18
Metals (μg/L)																						
Arsenic, Dissolved	7440-38-2	<20.0																<20.0			10	MCL
Barium, Dissolved	7440-39-3	156										-						<10.0			2,000	HRL-93
Cadmium, Dissolved	7440-43-9	<3.0																<3.0			0.5	HRL-15
Chromium, Dissolved ^[d]	7440-47-3	<10.0																<10.0			20,000/100 ^[d]	HRL-94
Lead, Dissolved	7439-92-1	<10.0																<10.0			15	MCL
Mercury, Dissolved	7439-97-6	<0.20	<0.20			<0.20		<0.20	<0.20				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20			2	MCL
Mercury, Total	7439-97-6												<0.20	<0.20	<0.20	<0.20	<0.20					
Selenium, Dissolved	7782-49-2	<20.0																<20.0			30	HRL-93
Silver, Dissolved	7440-22-4	<10.0																<10.0			30	HRL-93
List 2 Pesticides (μg/L)																					<u> </u>	
2,4-D	94-75-7			<0.024	0.074 ^[J]					<0.024		<0.24						<0.24			30	HRL-18
2,4-DB	94-82-6			<0.032	0.073 ^[J]					<0.032		<0.032						<0.032			NE ^[e]	
2,4,5-T	93-76-5			<0.030	0.071 ^[J]					<0.030		<0.030						<0.030			70	
2,4,5-TP (Silvex)	93-72-1			<0.016	0.07 [1]					<0.016		<0.016						<0.016			50	MCL
Bentazon	25057-89-0			<0.012	0.022 ^[J]					<0.012 ^[M]		<0.012						<0.012			30	HRL15
Dicamba	1918-00-9			<0.058	<0.059					<0.058 [M,X]		<0.058						<0.058			200	HRL93
MCPA	94-74-6			<0.022	0.082 [J]					<0.022		<0.022						<0.022			3	HRL93
Picloram	1918-02-1			<0.048	0.15 ^[J]					<0.048		<0.048						<0.048			500	HRL93
Triclopyr	55335-06-3			<0.031	0.058 ^[J]					<0.031		<0.031						<0.031			NE ^[e]	
Chlorothalonil	1897-45-6			<0.05	<0.05					<0.05		<0.05						<0.05			30	HRL94
Iprodione	36934-19-7			<0.10	<0.10					<0.10		<0.10						<0.10			NE ^[e]	
Propiconazole	60207-90-1			<0.05	<0.05					<0.05		<0.05						<0.05			NE ^[e]	
Other Parameters (µg/L)	_																					
Diesel Range Organics (DRO)				<100	<100																NE ^[e]	
Gasoline Range Organics (GRO)				<100	<100															<100	NE ^[e]	
Nitrate (as Nitrogen)	14797-55-8			0.41	0.49					0.12	<0.10	<0.10						<0.10			10,000	MCL
Nitrogen, Kjeldahl, Total	7727-37-9			<0.50	0.8					2.9	0.84	<0.80						<0.80			NE ^[e]	
m&p-Xylene	179601-23-1	<0.0020		<0.0020	<0.0020		<0.0020				<0.0020	<0.0020						<0.0020	<0.0020	<0.0020	NE ^[e]	
o-Xylene	95-47-6	<0.0010		<0.0010	<0.0010		<0.0010				<0.0010	< 0.0010						<0.0010	<0.0010	<0.0010	NE ^[e]	

Drinking Water Criteria = The most conservative value for chronic or cancer exposures provided from the following sources including the Minnesota Department of Health (MDH) Health Risk Limit (HRL), MDH Health Based Value (HBV), MDH Risk Assessment Advice (RAA) or Maximum Contaminant Level (MCL). The date of promulgation is provided, if available. Values updated April 2019.

µg/L = Micrograms per liter.

- < = Not detected at or above the laboratory reporting limit indicated.
- RL = Reporting limits for other parameters that are not listed individually in this table because their concentrations were below reporting limits provided in the laboratory report.
- $\label{eq:NE} \mbox{NE = Regulatory limit not established for this parameter}.$
- cPAH = Individual regulatory limit not established for this carcinogenic PAH; included in BaP equivalent calculation.
- [a] = Regulatory limit for combination of cis- and trans-1,3-dichloropropene.
- [b] = Regulatory limit for 4-methylphenol only.
- [c] = Benzo[a]pyrene (BaP) equivalent is calculated based on the concentration and weighted toxicity of cPAHs; Minnesota Pollution Control Agency; 2009. If no cPAHs were detected above reasonable laboratory reporting limits the BaP equivalent is reported as 0 mg/kg per MPCA Remediation Division Policy; June 2011.
- [e] = No applicable standard exists. When sampling water directly from drinking water wells, refer to the Minnesota Department of Health's (MDH's) document entitled Guidance for Evaluating Health Risks for Gasoline and Diesel Contaminated Drinking Water, dated November 2018.
- [1] The continuing calibration for this analyte exceeded 20% difference acceptance criteria for EPA method. Analyte presence below reporting limits in associated samples. No impact to data.
- [2] The continuing calibration for this analyte is below 20% difference acceptance criteria for EPA method 8260D but within 50% of the true value. Instrument sensitivity verified with reporting limit check.
- [J] Analyte was detected but is below the reporting limit. The concentration is estimated.
- [M] The matrix spike and/or matrix spike duplicate recovery was outside of the laboratory control limits.

 [X] Precision for the matrix spike duplicate, laboratory control sample duplicate or lab duplicate was outside of control limits.

Exceeds Drinking Water Criteria

Soil Analytical Results - 2022 Additional Soil Sampling Former Hillcrest Golf Course St. Paul, Minnesota

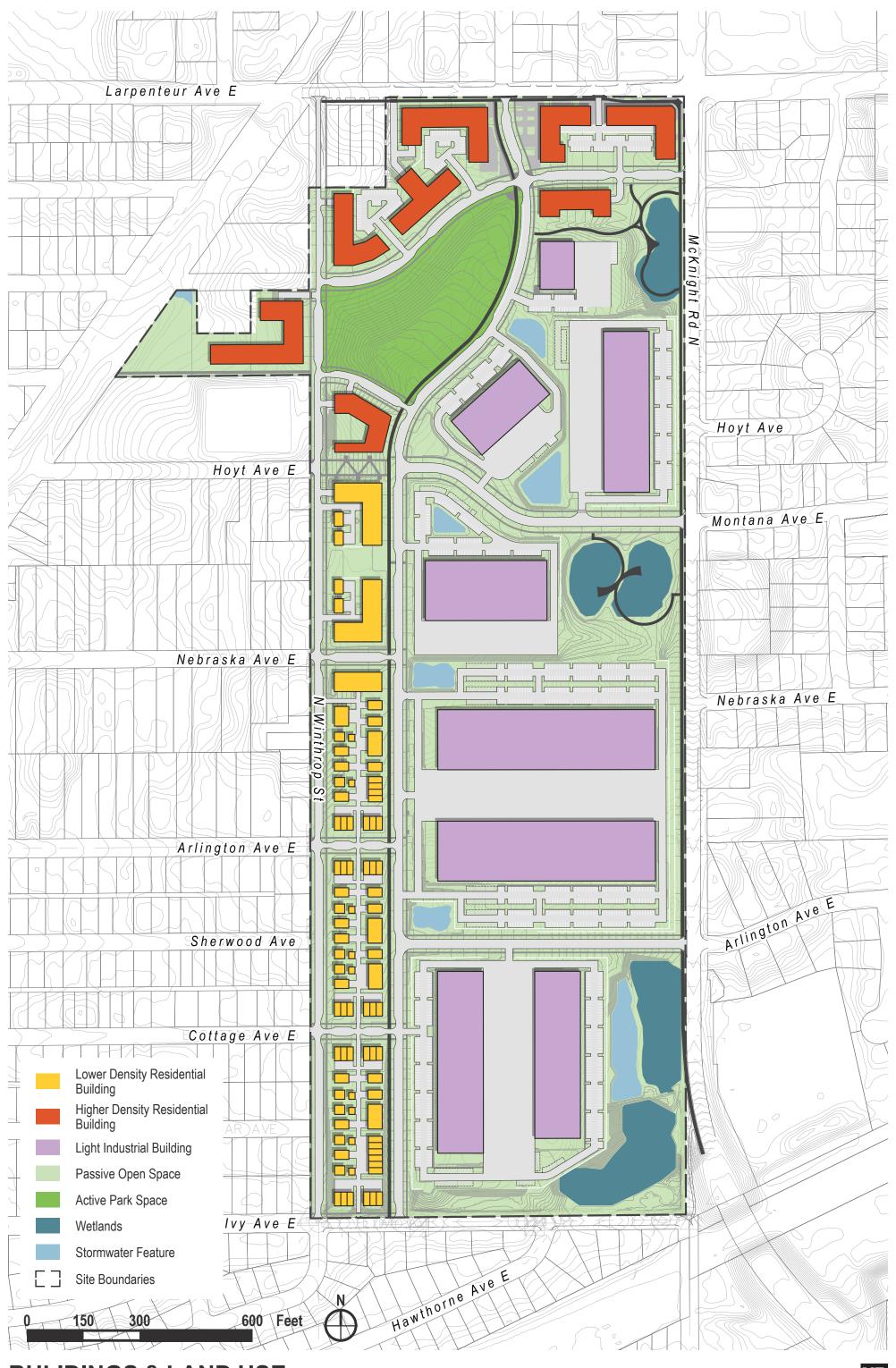
Project B19003316.00

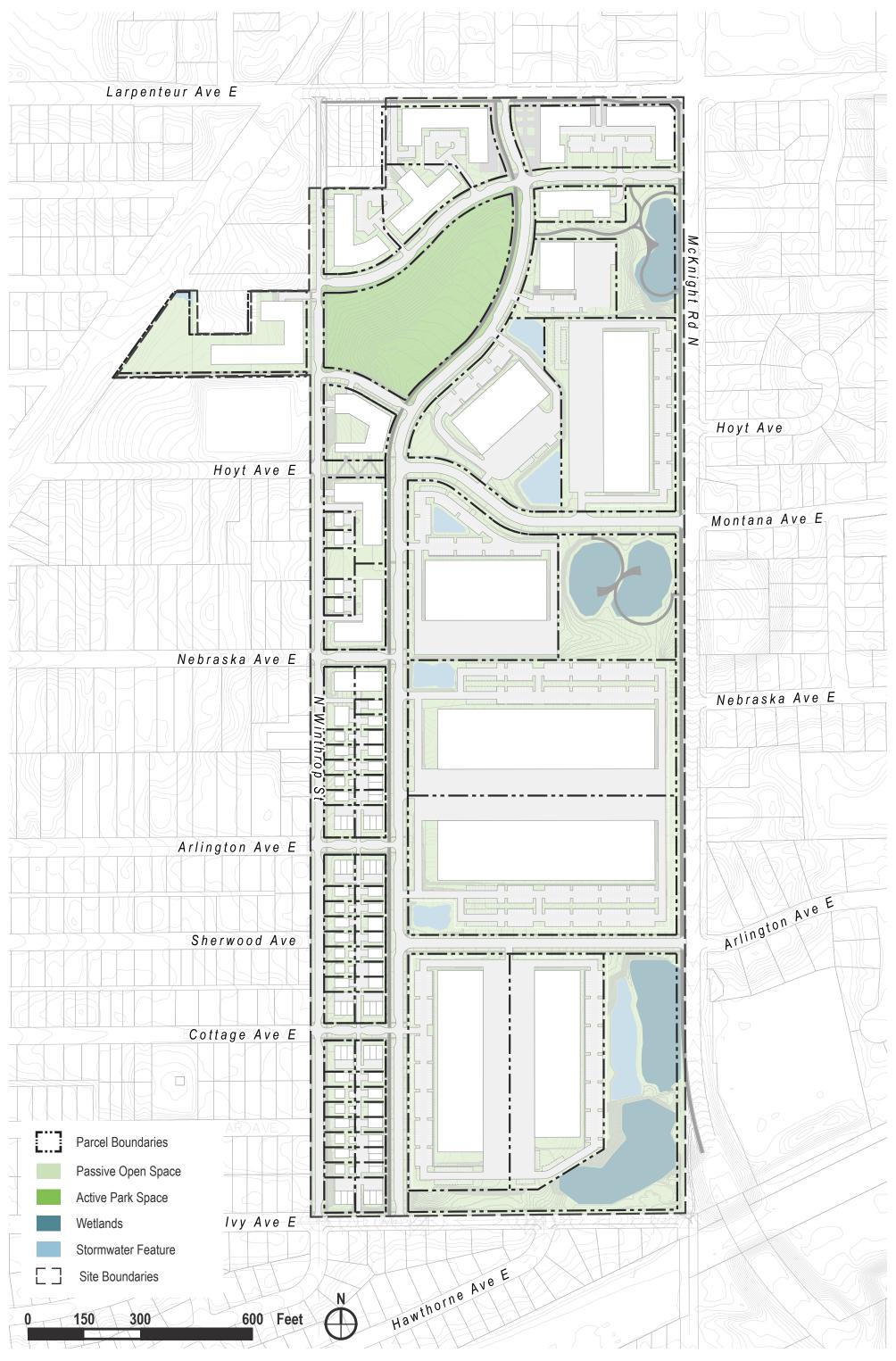
	CAS No.					Sample Id	entifier and Date	Collected					Residential/	Commercial/				
Compound/Parameter		CAS No.	CAS No.	CAS No.	PW-6C (1-1.5')	PW-6C N (0- 0.5')	PW-6C W (0- 0.5')	PW-6D (1-1.5')	PW-6D S (0- 0.5')	PW-6D W (0- 0.5')	SED-6 (0-0.5')	SED-6 (1-1.5')	SED-6 E (0-0.5')	SED-6 S (0-0.5')	SED-6 W (0- 0.5')	Recreational SRV	Industrial SRV	SLV (mg/kg)
		07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	07/13/2022	(mg/kg)	(mg/kg)	1			
Metals (mg/kg)																		
Mercury, Total	7439-97-6	2.9	4.0	2.4	0.68	2.5	0.24	0.29	<0.027	0.069	1.6	0.56	2.7	3.1	3.3			

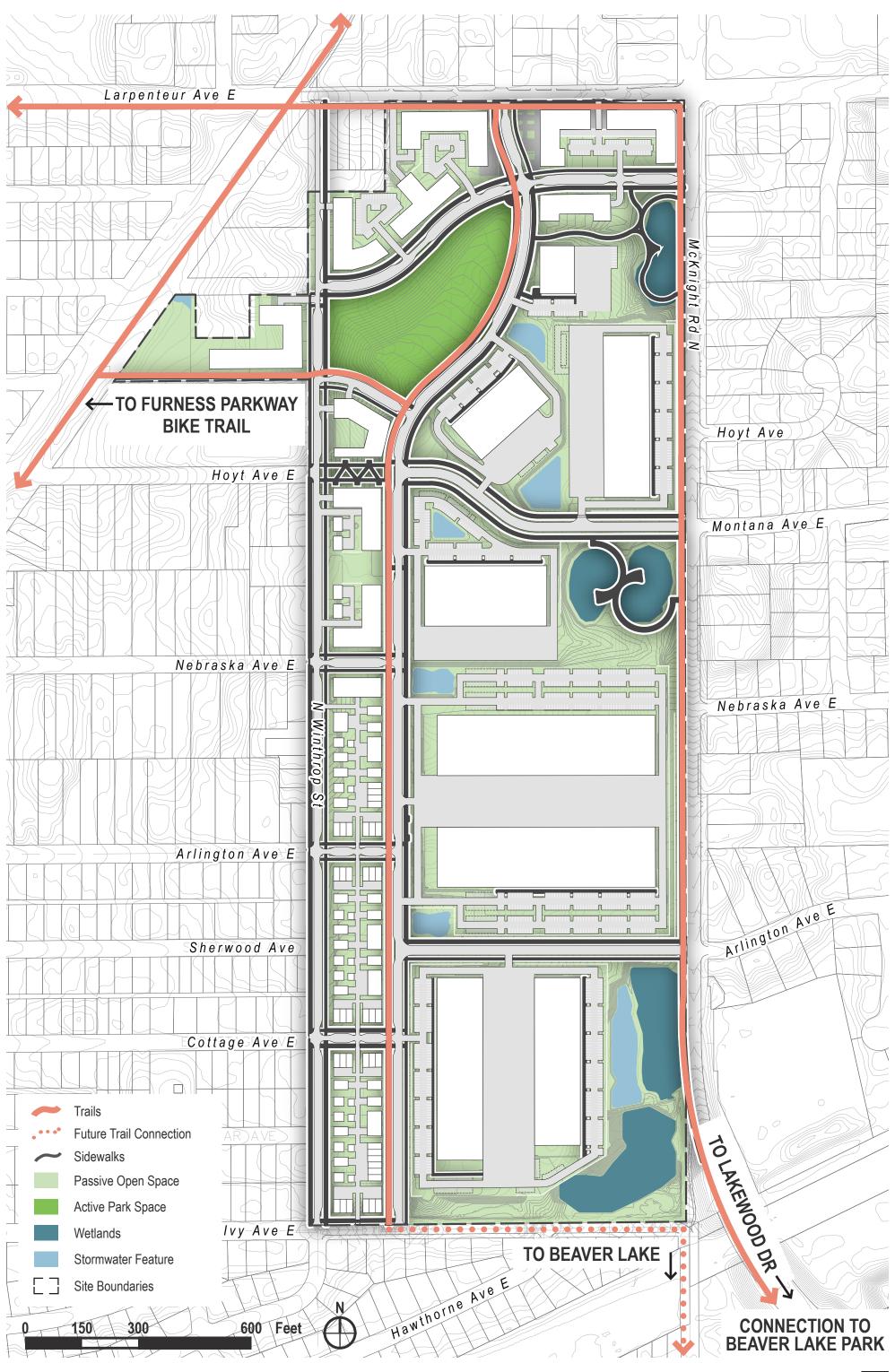
Notes

Minnesota Pollution Control Agency (MPCA) Soil Reference Values (SRVs) updated in April 2022 and Soil Leaching Values (SLVs) updated in June 2013. mg/kg = Milligrams per kilogram.

< = Not detected at or above the laboratory reporting limit indicated.


Exceeds Residential/Recreational SRV
Exceeds Commercial/Industrial SRV
Exceeds SLV


Exceeds 100 mg/kg for DRO/GRO



Appendix A Development Plan

Appendix B Additional Sampling Laboratory report/MDH checklist— South Wetland Area

July 19, 2022

Mark Keefer Braun Intertec 11001 Hampshire Ave S Bloomington, MN 55438

RE: Project: B1903316.00

Pace Project No.: 10616781

Dear Mark Keefer:

Enclosed are the analytical results for sample(s) received by the laboratory on July 13, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Linley Byrnes

linley.byrnes@pacelabs.com

(612)607-1700 Project Manager

Enclosures

(612)607-1700

CERTIFICATIONS

Project: B1903316.00 Pace Project No.: 10616781

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air

Lab

A2LA Certification #: 2926.01* Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009*

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062

Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137*

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530

Missouri Certification #: 10100

North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110*

North Dakota Certification (A2LA) #: R-036

Oklahoma Certification #: 9507*
Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001*
Pennsylvania Certification #: 68-00563*
Puerto Rico Certification #: MN00064
South Carolina Certification #: TN02818
Texas Certification #: T104704192*
Utah Certification #: MN00064*
Vermont Certification #: VT-027053137
Virginia Certification #: 40163*

Virginia Certification #: 460163*
Washington Certification #: C486*
West Virginia DEP Certification #: 382
West Virginia DW Certification #: 9952 C
Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

*Please Note: Applicable air certifications are denoted with

an asterisk (*).

SAMPLE SUMMARY

Project: B1903316.00
Pace Project No.: 10616781

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10616781001	SED-6 (1-1.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781002	SED-6 (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781003	SED-6 (1-1.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781004	SED-6 W (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781005	SED-6 E (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781006	SED-6 S (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781007	PW-6C (1-1.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781008	PW-6C N (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781009	PW-6C W (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781010	PW-6D (1-1.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781011	PW-6D W (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20
10616781012	PW-6D S (0-0.5')	Solid	07/13/22 12:00	07/13/22 16:20

SAMPLE ANALYTE COUNT

Project: B1903316.00
Pace Project No.: 10616781

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10616781001	SED-6 (1-1.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781002	SED-6 (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781003	SED-6 (1-1.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781004	SED-6 W (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781005	SED-6 E (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781006	SED-6 S (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781007	PW-6C (1-1.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781008	PW-6C N (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781009	PW-6C W (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781010	PW-6D (1-1.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781011	PW-6D W (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10616781012	PW-6D S (0-0.5')	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

SUMMARY OF DETECTION

Project: B1903316.00
Pace Project No.: 10616781

ab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0616781001	SED-6 (1-1.5')					-
ASTM D2974	Percent Moisture	28.7	%	0.10	07/14/22 10:13	N2
0616781002	SED-6 (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	0.29 80.0	mg/kg %		07/19/22 16:24 07/14/22 10:13	N2
0616781003	SED-6 (1-1.5')					
ASTM D2974	Percent Moisture	33.3	%	0.10	07/14/22 10:14	N2
0616781004	SED-6 W (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	0.56 63.5	mg/kg %		07/19/22 16:28 07/14/22 10:14	N2
0616781005	SED-6 E (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	0.069 51.4	mg/kg %	0.038 0.10	07/19/22 16:29 07/14/22 10:14	N2
0616781006	SED-6 S (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	1.6 76.6	mg/kg %	0.085 0.10	07/19/22 16:31 07/14/22 10:14	N2
0616781007	PW-6C (1-1.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	2.9 14.2	mg/kg %	0.11 0.10	07/19/22 16:53 07/14/22 10:14	N2
0616781008	PW-6C N (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	4.0 10.7	mg/kg %		07/19/22 16:55 07/14/22 10:46	N2
0616781009	PW-6C W (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	2.4 13.8	mg/kg %		07/19/22 16:56 07/14/22 10:47	N2
0616781010	PW-6D (1-1.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	0.68 24.4	mg/kg %	0.023 0.10	07/19/22 16:41 07/14/22 10:47	N2
0616781011	PW-6D W (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	0.24 57.9	mg/kg %		07/19/22 16:42 07/14/22 10:47	N2
0616781012	PW-6D S (0-0.5')					
EPA 7471B ASTM D2974	Mercury Percent Moisture	2.5 29.0	mg/kg %	_	07/19/22 17:03 07/14/22 10:47	N2

PROJECT NARRATIVE

Project: B1903316.00 Pace Project No.: 10616781

Method: EPA 7471B

Description: 7471B Mercury

Client: Braun Intertec Corporation

Date: July 19, 2022

General Information:

12 samples were analyzed for EPA 7471B by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: B1903316.00
Pace Project No.: 10616781

Lab ID: 106	16781001	Collected: 07/13/2	22 12:00	Received: 07	7/13/22 16:20 N	Matrix: Solid	
basis and are adj	iusted for pe	ercent moisture, sa	imple s	ize and any dilu	tions.		
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
•		•	ethod: E	PA 7471B			
ND	mg/kg	0.027	1	07/18/22 17:01	07/19/22 16:16	7439-97-6	
•							
28.7	%	0.10	1		07/14/22 10:13		N2
	Results Analytical Methodology Pace Analytical ND Analytical Methodology Analytical Methodology	Results Units Analytical Method: EPA 747 Pace Analytical Services - N ND mg/kg Analytical Method: ASTM D Pace Analytical Services - N	Results Units Report Limit Analytical Method: EPA 7471B Preparation Method Pace Analytical Services - Minneapolis ND mg/kg 0.027 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Results Units Report Limit DF Analytical Method: EPA 7471B Preparation Method: EPA Pace Analytical Services - Minneapolis ND mg/kg 0.027 1 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Results Units Report Limit DF Prepared Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis ND mg/kg 0.027 1 07/18/22 17:01 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis ND mg/kg 0.027 1 07/18/22 17:01 07/19/22 16:16 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis Results Units Report Limit DF Prepared Analyzed CAS No. Prepared Analyzed CAS No. Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis ND mg/kg 0.027 1 07/18/22 17:01 07/19/22 16:16 7439-97-6 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis

Project: B1903316.00
Pace Project No.: 10616781

Sample: SED-6 (0-0.5')	Lab ID: 106	16781002	Collected: 07/13/2	22 12:00	Received: 07	7/13/22 16:20 N	/latrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth Pace Analytica		1B Preparation Me linneapolis	ethod: E	EPA 7471B			
Mercury	0.29	mg/kg	0.098	1	07/18/22 17:01	07/19/22 16:24	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	80.0	%	0.10	1		07/14/22 10:13		N2

Project: B1903316.00
Pace Project No.: 10616781

. 400								
Sample: SED-6 (1-1.5')	Lab ID: 106	16781003	Collected: 07/13/2	2 12:00	Received: 07	7/13/22 16:20 I	Matrix: Solid	
Results reported on a "dry weight"	basis and are ad	justed for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Met	hod: EPA 747	1B Preparation Me	thod: E	PA 7471B			
	Pace Analytica	al Services - N	linneapolis					
Mercury	ND	mg/kg	0.025	1	07/18/22 17:01	07/19/22 16:26	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Met	hod: ASTM D	2974					
	Pace Analytica	al Services - N	linneapolis					
Percent Moisture	33.3	%	0.10	1		07/14/22 10:14	ļ	N2

Project: B1903316.00
Pace Project No.: 10616781

Sample: SED-6 W (0-0.5')	Lab ID: 106	16781004	Collected: 07/13/2	2 12:0	0 Received: 07	7/13/22 16:20 N	/latrix: Solid	•
Results reported on a "dry weight"	basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth Pace Analytica		1B Preparation Me linneapolis	thod: E	EPA 7471B			
Mercury	0.56	mg/kg	0.049	1	07/18/22 17:01	07/19/22 16:28	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	63.5	%	0.10	1		07/14/22 10:14		N2

Project: B1903316.00
Pace Project No.: 10616781

Lab ID: 106	16781005	Collected: 07/13/2	2 12:00	Received: 07	7/13/22 16:20 N	Matrix: Solid	
basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
•		•	thod: E	PA 7471B			
0.069	mg/kg	0.038	1	07/18/22 17:01	07/19/22 16:29	7439-97-6	
•							
51.4	%	0.10	1		07/14/22 10:14		N2
	Results Analytical Meth Pace Analytica 0.069 Analytical Meth Pace Analytical	Results Units Analytical Method: EPA 747 Pace Analytical Services - Months Method: ASTM D2 Pace Analytical Method: ASTM D2 Pace Analytical Services - Months Method: ASTM D2	Results Units Report Limit Analytical Method: EPA 7471B Preparation Methode Pace Analytical Services - Minneapolis 0.069 mg/kg 0.038 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Results Units Report Limit DF Analytical Method: EPA 7471B Preparation Method: EPA control of the Pace Analytical Services - Minneapolis 0.069 mg/kg 0.038 1 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Results Units Report Limit DF Prepared Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis 0.069 mg/kg 0.038 1 07/18/22 17:01 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis O.069 mg/kg O.038 1 O7/18/22 17:01 O7/19/22 16:29 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis	Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis Basis and are adjusted for percent moisture, sample size and any dilutions. Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 7471B Preparation Method: EPA 7471B Pace Analytical Services - Minneapolis 0.069 mg/kg 0.038 1 07/18/22 17:01 07/19/22 16:29 7439-97-6 Analytical Method: ASTM D2974 Pace Analytical Services - Minneapolis

Project: B1903316.00
Pace Project No.: 10616781

Sample: SED-6 S (0-0.5')	Lab ID: 106	16781006	Collected: 07/13/2	2 12:0	0 Received: 07	7/13/22 16:20 N	//atrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth		1B Preparation Me linneapolis	thod: E	EPA 7471B			
Mercury	1.6	mg/kg	0.085	1	07/18/22 17:01	07/19/22 16:31	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	76.6	%	0.10	1		07/14/22 10:14		N2

Project: B1903316.00
Pace Project No.: 10616781

Sample: PW-6C (1-1.5')	Lab ID: 106	16781007	Collected: 07/13/2	2 12:0	0 Received: 07	7/13/22 16:20 N	//atrix: Solid	
Results reported on a "dry weight"						, ,	nation Cond	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth		1B Preparation Me linneapolis	thod: E	EPA 7471B			
Mercury	2.9	mg/kg	0.11	5	07/18/22 17:01	07/19/22 16:53	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	14.2	%	0.10	1		07/14/22 10:14		N2

Project: B1903316.00
Pace Project No.: 10616781

1 400 1 10,000 110 100 10101								
Sample: PW-6C N (0-0.5')	Lab ID: 106	16781008	Collected: 07/13/2	2 12:00	Received: 07	7/13/22 16:20	Matrix: Solid	
Results reported on a "dry weight"	basis and are ad	iusted for pe	rcent moisture, sa	mple si	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Met		1B Preparation Me	thod: El	PA 7471B			
Mercury	4.0	mg/kg	0.22	10	07/18/22 17:01	07/19/22 16:5	5 7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Met							
Percent Moisture	10.7	%	0.10	1		07/14/22 10:46	6	N2

Project: B1903316.00
Pace Project No.: 10616781

. 400								
Sample: PW-6C W (0-0.5')	Lab ID: 106	16781009	Collected: 07/13/2	2 12:00	Received: 07	7/13/22 16:20	Matrix: Solid	
Results reported on a "dry weight"	basis and are ad,	iusted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Metl Pace Analytica		1B Preparation Me	thod: E	PA 7471B			
Mercury	2.4	mg/kg	0.097	5	07/18/22 17:01	07/19/22 16:56	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Metl Pace Analytica							
Percent Moisture	13.8	%	0.10	1		07/14/22 10:47	7	N2

Project: B1903316.00
Pace Project No.: 10616781

Sample: PW-6D (1-1.5')	Lab ID: 106	16781010	Collected: 07/13/2	2 12:0	0 Received: 07	7/13/22 16:20 N	Matrix: Solid	
Results reported on a "dry weight".	basis and are adj	usted for per	cent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth		1B Preparation Me linneapolis	thod: E	EPA 7471B			
Mercury	0.68	mg/kg	0.023	1	07/18/22 17:01	07/19/22 16:41	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	24.4	%	0.10	1		07/14/22 10:47		N2

Project: B1903316.00
Pace Project No.: 10616781

•								
Sample: PW-6D W (0-0.5')	Lab ID: 106	16781011	Collected: 07/13/2	2 12:00	Received: 07	7/13/22 16:20 N	Matrix: Solid	
Results reported on a "dry weight" l	basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth		1B Preparation Me linneapolis	thod: E	PA 7471B			
Mercury	0.24	mg/kg	0.044	1	07/18/22 17:01	07/19/22 16:42	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	57.9	%	0.10	1		07/14/22 10:47		N2

Project: B1903316.00
Pace Project No.: 10616781

Date: 07/19/2022 06:06 PM

Sample: PW-6D S (0-0.5')	Lab ID: 106	16781012	Collected: 07/13/2	22 12:00	Received: 07	7/13/22 16:20 N	Matrix: Solid	•
Results reported on a "dry weight" l	basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical Meth		1B Preparation Me linneapolis	thod: E	EPA 7471B			
Mercury	2.5	mg/kg	0.12	5	07/18/22 17:01	07/19/22 17:03	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical Meth Pace Analytica							
Percent Moisture	29.0	%	0.10	1		07/14/22 10:47		N2

QUALITY CONTROL DATA

Project: B1903316.00 Pace Project No.: 10616781

QC Batch: 828064 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471B Mercury Solids

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10616781001, 10616781002, 10616781003, 10616781004, 10616781005, 10616781006, 10616781007,

10616781008, 10616781009, 10616781010, 10616781011, 10616781012

METHOD BLANK: 4387221 Matrix: Solid

Associated Lab Samples: 10616781001, 10616781002, 10616781003, 10616781004, 10616781005, 10616781006, 10616781007,

10616781008, 10616781009, 10616781010, 10616781011, 10616781012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/kg ND 0.017 07/19/22 16:08

LABORATORY CONTROL SAMPLE: 4387222

Date: 07/19/2022 06:06 PM

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Mercury mg/kg 0.5 0.51 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4387223 4387224

MS MSD

10616781001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 20 Mercury 0.67 0.66 0.68 0.66 98 97 80-120 3 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: B1903316.00 Pace Project No.: 10616781

QC Batch: 827863 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight / %M by ASTM D2974

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10616781001, 10616781002, 10616781003, 10616781004, 10616781005, 10616781006, 10616781007

SAMPLE DUPLICATE: 4386482

10616781007 Dup Max RPD RPD Qualifiers Parameter Units Result Result 14.2 Percent Moisture % 13.9 2 30 N2

SAMPLE DUPLICATE: 4386702

Date: 07/19/2022 06:06 PM

		10615790002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	 %	27.9	27.1		3	0 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: B1903316.00 Pace Project No.: 10616781

QC Batch: 827941 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight / %M by ASTM D2974

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10616781008, 10616781009, 10616781010, 10616781011, 10616781012

SAMPLE DUPLICATE: 4386735

Date: 07/19/2022 06:06 PM

 Parameter
 Units
 Result Result
 Dup Result
 RPD
 Max RPD
 Qualifiers

 Percent Moisture
 %
 10.7
 11.1
 4
 30 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: B1903316.00 Pace Project No.: 10616781

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/19/2022 06:06 PM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: B1903316.00
Pace Project No.: 10616781

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10616781001	SED-6 (1-1.5')	EPA 7471B	828064	EPA 7471B	828837
10616781002	SED-6 (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781003	SED-6 (1-1.5')	EPA 7471B	828064	EPA 7471B	828837
10616781004	SED-6 W (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781005	SED-6 E (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781006	SED-6 S (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781007	PW-6C (1-1.5')	EPA 7471B	828064	EPA 7471B	828837
10616781008	PW-6C N (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781009	PW-6C W (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781010	PW-6D (1-1.5')	EPA 7471B	828064	EPA 7471B	828837
10616781011	PW-6D W (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781012	PW-6D S (0-0.5')	EPA 7471B	828064	EPA 7471B	828837
10616781001	SED-6 (1-1.5')	ASTM D2974	827863		
10616781002	SED-6 (0-0.5')	ASTM D2974	827863		
10616781003	SED-6 (1-1.5')	ASTM D2974	827863		
10616781004	SED-6 W (0-0.5')	ASTM D2974	827863		
10616781005	SED-6 E (0-0.5')	ASTM D2974	827863		
10616781006	SED-6 S (0-0.5')	ASTM D2974	827863		
10616781007	PW-6C (1-1.5')	ASTM D2974	827863		
10616781008	PW-6C N (0-0.5')	ASTM D2974	827941		
10616781009	PW-6C W (0-0.5')	ASTM D2974	827941		
10616781010	PW-6D (1-1.5')	ASTM D2974	827941		
10616781011	PW-6D W (0-0.5')	ASTM D2974	827941		
10616781012	PW-6D S (0-0.5')	ASTM D2974	827941		

	0#:10616781		10616781	chloric acid, (4) sodium hydroxide, (5) zinc acetate,	lexane, (A) ascorbicacid, (B) ammonium suifate,	Lab Proffle/Une: \(\sum_{\text{Tab}}\) Sample Receipt Checklist:	Custody Seals Present/Intact Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA	N N N N N N N N N N N N N N N N N N N	es Received on Ice Y N Headspace Acceptable Y N Regulated Soils Y N	ime Y N Sesent Y N	N A	LAB USE ONLY: Lab Sample # / Comments:			200	600	(50d	\\$00 \\	500	H&S	000	W/A	Them ID#	Cooler 1 Them Upon Receipt DC Cooler 1 Them Corr. Pactor: OC Cooler 1 Them Corr. Pactor: OC	Comments:	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page:
LAB USE ONLY- Affix Workorder/Lr	T	ALL SHADED AI	Container Preservative Type ** 106	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydro	(v) meutanov, (v) soutum bisuitate, (e) soutum triosulitate, (e) hexane, (A) ascorbiclacid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Analyses					<i>(</i>				X		***	2.5		X	72	SHORT HOLDS PRESENT (<72 hoursh: y N			MTJLLA		Date/Time: 653 d Template: - /(3/22- Prelogin:	Date/Time: 1670 PM:
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information:	Muneapolos HN	Ecter Chaunitertec. com	بدا	1.=	Compliance M	DW PWS ID #: DW Location CO	Required: Immediately Packed on Ice:	Field Filtered (if applicable): [] Next Day [] Yes [] No [] 4 Day [] 5 Day []	/\ /\ /\	Res # of	Date Time Date Time								> 5 * 7	Type of Ice Use		Radchem sample(s) screened (<500 cpm): Y N NA	Received by/Company: (Signature	1515		Date/Time: Received by/Company: (Sgnature)
	ace Analytical*	Braun Intertec	mosure Aucs,	ر. در	Copy To:	Customer Project Name/Number:	Phone: Site/Facility ID #: Email:	Collected By (print): Purchase Order #: Quote #:	Gallected By (signature): Turnaround Date Required:	Disposal: Rush: 8e as appropriate [] Return [] 3.7 or.	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WV) Product (P), Soil/Soild (S1), Oil (O)) Wine (WP) Air (AR) Tissue (TS) Biosessy (B) Vano (MP) Air (AR)	Customer Sample ID		75 (51-1)	٥ ٥		SEV-6~10-03 / CED-6 下 (0-03)	シシーの	35 C	2-0)N-C	rw-66 w(0-0.5)	Customer Remarks / Special Conditions / Possible Hazards:			linquished by/Company: (Signatu	Religiished Holomanni (Samura Burter Re	of delivers by company. (agractive)	Relinquished by/Company: (Signature)

or Eist Pace Workorder Number or r Here		or LAB USE ONLY	Lab Project Manager:	iid, (4) sodium hydroxide, (5) zinc acetate,) accophic acid (8) ammonium culfate	y ascurate acua, (b) arminomum surface,	Lab Fample Receipt Checklist:	Present/Intact Y N bres Present Y N ature Present Y N	Intact YN Bottles YN nnt Volume YN	Received on ice Y N adspace Acceptable Y N Julated Soils Y N	Samples in Holding Time Y N NA Residual Chlorine Present Y N NA Cl Skrips: Y N NA Sample na Arrestable V N NA	rips: 1 w	Acetate Strips:	Lab Sample # / Comments:		25		5			Lab Sample Temperature Ipéen	Temp Blank Received: X N NA Therm ID#: Cooler 1 Temp Baceint:	Cooler I Therm Corr. Factor:	Comments:	グナオリー	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page:
LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MT1L Log-in Number Here		ALL SHADED AREAS are for LAB USE ONLY	Container Preservative Type ** Eab	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acètate, (6) methanol. (7) sodium bisulfate. (8) sodium thinsulfate (9) hexane (A) according acid (R) ammonium culcaho.	Unpreserved, (0) Other	Anaryses	368	A C G C	» » »											SHORT HOLDS PRESENT (<72 hours): Y N N/A	Lab Tracking #: 2797599	Samples received via: FEDEX UPS Client Courier Pace Courier	MTJLLA	7/13/22 1515 Table #:	Date/Time: 1530 Template: 13/20 Prelogin:	ime: 1620
CHAIN-OF-CUSTODY Analytical Request Document	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields Rilling Information:	SAME	N N S N S N S N S N S N S N S N S N S N	Email To: For Elbraminky tez, coin (6) m	した 日 日	State: County/Eity: Time Zone Collected:	Compliance Mo		ired: Immediately Packed on Ice: [Myes [] No	Field Filtered (if applicable): Next Day		er (DW), Ground Water (GW), Wastewater (WW), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Composite Start) Composite End Composite Composite Composite End Composite C	Date Time Date Time	M-5-721 1C-00					Type of Ice Used: Wet Blue Dry None	Packing Material Used:	Radchem sample(s) screened (<500 cpm): Y N NA	Date/Time: Received by/Company: (Signature)	. Kis	Received by/Company: (Sign	Date/Time: Received by/Company: (Sgnature)
CHAIN-OF-CU		Brawn Intertec	ves Hinnapol	-		Customer Project Name/Number:	Phone: Site/Facility ID #: Email:	Collected By (print): Purchase Order #: Collected By (print): Quote #:	Solected By (signature): Turnaround Date Required:	Sample Disposal: [] Dispose as appropriate [] Return [] Same Day [] Next Day [] Archive:	[] Hold: Expedite Cha	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wasteware Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Othe	Customer Sample ID Matrix * Grab	(1)	(>0-0/C: Co-)	0				Customer Remarks / Special Conditions / Possible Hazards:			Relinquished by/Company: (Signature) Date	Surver		Rehinquished by/Company: (Signature)

DC#_Title: ENV-FRM-MIN4-0150 v05_Sample Condition Upon Receipt (SCUR)

Effective Date: 04/12/2022

Sample Condition Upon Client Name:			Project	t#:	1 14			_
Bayn Intake					M()# : 10(61678	1
Courier: Fed.Ex UPS [usps		Client			LAB1	Due Date: (
□Pace □SpeeDee □	Commerc	cial				NT: Braun-		01/20/22
			See Excep	otions RM-MIN4-	4 211	-MI DI GUN-	DLIT	
Tracking Number:			0142					
Custody Seal on Cooler/Box Present? Yes	∕∐No		Seals In	tact? Yes	; <u>Z</u>	No Biologic	al Tissue Frozen?]Yes ∏No ∏{N/A
Packing Material: Bubble Wrap Bubble Ba	gs	□None	По	ther:		_	Temp Blank?	☐Yes ☐No
Thermometer:	T5(0489)		_	Type of	☑ Wet			
ZT17 (0042) [01339252/1710		Tomas To	kon3 Dv.	Ice:	⊠wet	☐Blue ☐	None Dry	Melted
Vere All	Container	remps ra	Kenr 🗆 Yes	LINO NIA				
Temp should be above freezing to 6°C Cooler Temp F	lead w/t	emp bla	ınk:	4.5		-	Average Corrected Femp (no temp bl only):0	ank ENV-FRM-MIN4-0142
Correction Factor: Tow Cooler Temp Correction	ted w/te	mp bla	nk:	45		°c		
USDA Regulated Soil: (N/A, water sample/Other:		}		Date/I	nitials of	Person Examining	Contents: 1/13/	WW
Did samples originate in a quarantine zone within the Unite	d States: /	, AL, АВ, С	A, FL, GA,			_		ernationally, including
	Yes	ØNo				d Puerto Rico)?		∑ No
If Yes to either question, fill out a			ecklist EN	V-FRM-MIN	I-0154 ar			
Location (check one): Duluth Minneap Chain of Custody Present and Filled Out?	Yes	/irginia No		1.		C	OMMENTS:	
Chain of Custody Present and Timed Out? Chain of Custody Relinquished?	Yes	No		2.				
Sampler Name and/or Signature on COC?	Yes	□No	□n/a	3.				
Samples Arrived within Hold Time?	Yes	∐No		4.		<8 hrs >8hr,		
Short Hold Time Analysis (<72 hr)?	☐Yes	ΔNo					oliform/E coli	/cBOD Hex Chrome
Rush Turn Around Time Requested?	□Yes	No		6.				
Sufficient Volume?	∠ Yes	□No		7.				
Correct Containers Used?	Yes	□No		8.003			ve some	SED-GNCI-LI
-Pace Containers Used? Containers Intact?	✓ Yes ✓ Yes	No No		9. (10)		OO3 logg	ed in as	SELVE NUTL
Field Filtered Volume Received for Dissolved Tests?	∏Yes	По	☑N/A		diment v	risible in the disso	lved container?	lYes □No
Is sufficient information available to reconcile the						Pate/Time on Conta		See Exception
samples to the COC?	Z Yes	□No		Tru	Ven	MAS		ENV-FRM-MIN4-0142
Matrix: Water Soil Oil Other-				VY	V .010			
All containers needing acid/base preservation have been checked?	Yes	□No	ZÎN/A	12. Sample	e# '	,		
All containers needing preservation are found to be in								
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	Yes	□No	∕ In/a] NaOH	☐ HNO₃	∏H₂SO₄	Zinc Acetate
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin/PFAS	∏Yes	□No	ØN/A	Positive for Chlorine?	=]Yes]No pH P	aper Lot#	See Exception ENV-FRM-MIN4-0142
				Res. Chlor	ine	0-6 Roll	0-6 Strip	0-14 Strip
Liberta de la constanta de la		<u> </u>						
Headspace in Methyl Mercury Container? Extra labels present on soil VOA or WIDRO containers?	Yes	□No	☑N/A					
Headspace in VOA Vials (greater than 6mm)?	☐Yes ☐Yes	∏No ∐No	DN/A DN/A	13.				See Exception ENV-FRM-MIN4-0140
Trip Blank Present?	Yes	□No	ZIN/A	14.				CIAA-LKIAI-IAIIM4-0140
Trip Blank Custody Seals Present?	Yes	□No	N/A		Trip Bla	nk Lot # (if purcha	ısed):	
CLIENT NOTIFICATION/RESOLUTION				D /T:				Yes No
Person Contacted: Comments/Resolution:				. Date/Ti	me:			
	^	1.0	,					
Project Manager Review:	Land	17) / w		Date:	07.14.2022		
Note: Whenever there is a discrepancy affecting North Carolina compl	iarice samp	les, e copy	of this for	m will be sent t				out of hotel-incorrect
preservative, out of temp, incorrect containers).						Labeled by: _	NF	Page 26 of 27

Pace Analytical*

Document Name:

Service Center Transfer Checklist

Document Number: ENV-FRM-MIN4-0135 Rev.02 Document Revised: 06Apr2021

Page 1 of 1

Pace Analytica Services - Minneapolis

1	!	3	
į	į.	1	
ł	i .		
I		•	
	l .	r .	

Dervice Genter Transfer	Checklist
Service Center: MPLS BLM	AZ MT
Client: Braun Intertec	
Destination Lab:	
MPLS Duluth National Other	
Received w/ Custody Seal? Yes No	
Custody Seal Intact? Yes No No	
Temperature C: Temp Read Corr. Fact	or Corr. Temp
IR Gun: G87A9205200235 (T6)	Samples on ice, in cool down
Rush Short Hold N/A	
Containers Intact? Yes No	
Repacked and Re-Iced? Yes No	
Notes:	
No Temp Blank Section	
Read Temp Corr. Temp Avg. Temp	
	7/13/22
	AF

Minnesota Department of Agriculture 651-201-6148 Minnesota Department of Health 651-201-5357 Minnesota Pollution Control Agency 651-757-2560

Laboratory Data Review Checklist

ATTACHMENT: LABORATORY DATA REVIEW GUIDANCE

INSTRUCTIONS

PROJECT INFORMATION

The following is the informal checklist that should be used to review data for the Minnesota Department of Agriculture, Minnesota Pollution Control Agency and Minnesota Department of Health. The information follows the general format of the National Functional Guidelines, which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. Refer to the appropriate guidance document for each agency for instructions.

Proj	ect Name	L	aborat	tory		
	mer Hillcrest Golf Course			•	al Services	
	k Order Number / Lab Report ID		Report			Review Date
106	16781		7/19/20			7-19-2022
		ſ	Mark	Keef		Digitally signed by Mark Keefer Date: 2022.08.24 16:07:08 -05'00'
1.	CHAIN OF CUSTODY, PRESERVATION AN	ID HO	OLDII	NG T	IMES	
	QUESTION	YES	NO	N/A		COMMENTS
A	Is there a chain of custody (COC) with the report?	✓				
В	Is there a sample condition form with the report?	✓				
С	Were the samples preserved according to program requirements?	√				
	Were samples received in the correct containers?	✓				
D	Was there enough sample volume/weight to complete all requested analyses?	✓				
	ii. Was there enough sample collected to complete required batch QC?	√				
E	Were samples received within holding time for sample prep for all requested analyses?	✓				
F	Are there notes about sample condition or holding time issues on the COC? Explain the data impact.		✓			
G	Are there narration or data qualifiers with the report about sample condition or holding time issues? Explain the data impact.		√			
Н	Are the lab IDs cross-referenced correctly with the field IDs?	✓				

2.	CALIBRATION				
	QUESTION	YES	NO	N/A	COMMENTS
A	Do the report narrative or data qualifiers indicate calibration problems for any analyses? If yes, explain the data impact.		✓		See below.
3.	BLANKS				
	QUESTION	YES	NO	N/A	COMMENTS
	Do any of the analyses contain samples for field or trip blanks?		✓		
A	i. If yes, are there target analytes present above the reporting limit in the blanks?			√	
	ii. If yes, are the same compounds also present in the samples? Explain the possible data impact.			✓	
	Do method blanks for any analyses contain target analytes above the reporting limit?		✓		
В	i. If yes, are the same compounds present in the samples?			✓	
	ii. Is the amount of target analyte in the method blank more than 1/10th of that in the sample(s)? Explain the possible impact on the sample results.			✓	
С	Do instrument blanks contain analytes above the reporting limit?		✓		
4.	SURROGATES - ORGANIC ANALYSIS				
	QUESTION	YES	NO	N/A	COMMENTS
A	Are the lab recovery limits for surrogates specified on the report?			✓	
	Are the surrogates outside lab QC limits? (These should have a data qualifier.)			√	
	i. If yes, are the surrogates above the lab QC limits?			✓	
В	ii. Below the lab QC limits?			✓	
	iii. Were the affected samples re-analyzed? Discuss in the case narrative.			✓	
	iv. Explain what this could mean for the affected samples. Include in narrative.			✓	

5. LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL SAMPLE DUPLICATE (LCSD)

	QUESTION	YES	NO	N/A	COMMENTS
A	Are there LCS/LCSD samples present for the reported analyses?	✓			
	Are there LCS/LCSD compounds outside lab limits? If the LCS/LCSD fails, the LCS/LCSD and samples must be re-analyzed.		✓		
E	 i. If yes, are there compounds above the lab QC limits? If yes, an explanation is required. Include in narrative. 			✓	
	ii. Below the lab QC limits? If yes, an explanation is required. Include in narrative.			✓	

6. MATRIX SPIKE (MS) MATRIX SPIKE DUPLICATE (MSD) SAMPLE DUPLICATE (DUP)

	QUESTION	YES	NO	N/A	COMMENTS
A	Do the analytical methods used require an MS and/or MSD? If no, skip to 6 B.	✓			
	i. Have the required matrix spikes been prepared and reported?	√			
	ii. If no, is there an explanation in the report as to why?			√	
	iii. Did the lab process an alternate spiked sample such as an LCSD instead?			✓	
	iv. Are the lab QC limits specified in the report?	✓			
	v. Are there compounds outside the lab QC limits?		√		
	vi. If yes, did the lab re-run an MS/MSD?			√	
	Did the re-run MS/MSD pass? Discuss in the case narrative.			✓	
	Did the re-run MS/MSD fail? Discuss in the case narrative.			✓	
	Is the source sample flagged for MS/MSD compounds outside the lab QC limits?			✓	
В	Was a duplicate sample submitted for the analytical method(s)?		✓		
	 i. Is the Relative Percentage Difference (RPD) within 20%* for the duplicate pair? If no, explain possible causes and data impact. *Other RPD's may be acceptable. Check with regulatory agency. 			✓	

_					
7.	REPORTING LIMITS				
	QUESTION	YES	NO	N/A	COMMENTS
A	Are reporting limits clearly listed on the report for all analyses?	✓			
В	Do the reporting limits meet the program required limits listed? If not, an explanation is required.	✓			
8. 9	SAMPLE INFORMATION				
	QUESTION	YES	NO	N/A	COMMENTS
A	Are sample numbers cross-referenced correctly with the associated QC?	✓			
В	Are soil samples reported in dry weight basis?	✓			
С	Are percent moisture results reported?	✓			
D	Are positive detections reported?	√			
E	Are sample analytes appropriately flagged if the QC failed?	✓			
9.	REPORT NARRATIVE				
	QUESTION	YES	NO	N/A	COMMENTS
A	Is a narrative provided with the laboratory report which describes all problems with the analyses and all corrective actions taken to address these problems?	✓			
10.	ADDITIONAL COMMENTS ABOUT THE L	AB R	EPO	RT	
	sed upon the review of the laboratory data, the identified (evaluating inorganic concentration results.	QAQC (occurre	ences a	bove do not affect the usability of the data

Appendix C Well Construction Details Table

Table

Monitoring well Construction Details


Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

Well	MDH unique			Date	Surface Elevation	Top of Riser	Bottom of well	Depth to top of screen	Depth to bottom of	Screen slot		Water level		Water level
Number	well number	X coordinate	Y coordinate	Installed	(ft asml)	elevation (ft asml)	elevation (ft asml)	from surface (ft)	screen from surface (ft)	size (ft)	Depth to Water	elevation (ft msl)	Depth to Water	elevation (ft msl)
											12/3	/2021	7/1	0/2020
MW-1	849084	499377.238	4982034.25	6/25/2020	1030	1033	1005	15	25	10	24.08	1008.92	18.9	1014.1
MW-2	849085	499575.123	4981316.604	6/25/2020	1011	1012	991	10	20	10	9.51	1002.49	4	1008
MW-3	849086	499402.78	4980925.108	6/25/2020	1014	1019	994	20	30	10	29.9	989.1	22.7	996.3

Appendix D

Figure 6B – Groundwater Exceedances

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drinking Water Notes

Drinking Water Criteria

Exceeds Drinking Water Criteria

SCALE: 1" = 200'

B1903316

Drawing No: B1903316A

Drawn By: BJB Date Drawn: Checked By:

Last Modified: 6/12/19

> Former Hillcrest Golf Course

2200 Larpenteur Avenue E

Saint Paul, Minnesota

Groundwater **Exceedances**

Figure 6b

Appendix E Contaminant Impact Survey Documents

The Science You Build On

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com Project No: B1903316_00

Drawing No: B1903316_00_Nearby Wells

 Drawn By:
 ZS

 Date Drawn:
 6/2/2022

 Checked By:
 PAO

 Last Modified:
 6/28/2022

Hillcrest Redevelopment Site

McKnight Road N and Larpenteur Avenue E

St. Paul, Minnesota

Nearby Wells Map

Figure 1

Table 1 - Published Wells Former Hillcrest Golf Course Saint Paul, Minnesota Project B1903316.00

			-,-	.00 013033							
Unique Number/Identifier	Well Name	Address	City	County	Township	Range	Section	Depth(ft)	Elevation(ft)	Casing Depth(ft)	Casing Diameter
280699	BACCHUS, KEN	1595 MYRTLE ST	null	Ramsey	29	22	24	189	1034	147	4
256956	5 null	1759 HOWARD ST N	MAPLEWOOD	Ramsey	29	22	14	160	1016	136	4.5
849086	MW-3 ST PAUL PORT AUTHORITY	2200 LARPENTEUR AV E	ST PAUL	Ramsey	29	22	23	30	1014	20	2
249773	B BERRY, WAYNE	1600 MYRTLE ST	MAPLEWOOD	Ramsey	29	22	24	154	1034	150	4
849084	4 MW-1 ST PAUL PORT AUTHORITY	2200 LARPENTEUR AV E	ST PAUL	Ramsey	29	22	23	25	1030	15	2
233715	5 null	BEEBEE RD	null	Ramsey	29	22	14	137	998 r	ull	null
603061	1 HILLCREST COUNTRY CLUB	2200 LARPENTEUR AV E	ST PAUL	Ramsey	29	22	23	486	1034	354	10
242944	4 PETERSON	1702 HOWARD ST	MAPLEWOOD	Ramsey	29	22	14	166	1020	147	6
244951	1 null	2345 MARYLAND	null	Ramsey	29	22	24	107	981 r	ull	3
247124	1 null	1709 MCKNIGHT RD	MAPLEWOOD	Ramsey	29	22	14	176	1022	152	3
849085	MW-2 ST PAUL PORT AUTHORITY	2200 LARPENTEUR AV E	ST PAUL	Ramsey	29	22	23	20	1011	10	2
272001	1 null	2169 LARPENTEUR AV E	MAPLEWOOD	Ramsey	29	22	14	256	1021	229	4
1000025701	1 WOJTOWICZ, L.	null	null	Ramsey	29	22	14 n	ull	1024 r	ull	null
280572	2 WOJTOWICZO, LOUIS	1714 HOWARD N	null	Ramsey	29	22	14	161	1024	148	4
280700	D DEMARS, CY	1633 MYRTLE	null	Ramsey	29	22	24	149	1027	142	4
208231	1 HILLCREST GOLF CLUB	null	null	Ramsey	29	22	23	550	1040	325	8
200876	5 YAEGER	STILLWATER RD	ST PAUL	Ramsey	29	22	24	103	1015	96	4.5
801672	2 HARMS, JESSE	2100 IDAHO AV E	ST PAUL	Ramsey	29	22	23	200	1004	168	4
225684	4 H. H. WITTE	2044 LARPENTEUR AV E	null	Ramsey	29	22	23	194	1007	134	4.5
249742	2 OLSEN, BRUCE & SANDY	2444 LARPENTEUR AV E	MAPLEWOOD	Ramsey	29	22	24	117	1022	117	4
278585	SIZER, JEREMY	2100 IDAHO AV E	ST PAUL	Ramsey	29	22	23	185	1001	124	4
233597	7 null	1605 MYRTLE ST	null	Ramsey	29	22	24	148	1037 r	ull	null
233838	3 null	1641 MYRTLE ST	ST PAUL	Ramsey	29	22	24	137	1024 r	ull	null
249752	2 JUNEK, ED	2436 LARPENTEUR AV E	MAPLEWOOD	Ramsey	29	22	24	151	1017	138	4
200875	ACORN GREEN HOUSE	null	null	Ramsey	29	22	24	561	1020 r	ull	null
280508	B BULK SERVICE CORPORATION	1300 MCKNIGHT	null	Ramsey	29	22	24	111 r	null	96	4
544043	ROSEWOOD ESTATES	null	null	Ramsey	29	22	24	34 r	null r	ull	null
544049	ROSEWOOD ESTATES	LAKEWOOD DR	MAPLEWOOD	Ramsey	29	22	24	25 r	null	25	16
279811	1 KROISS, STEVE	1950 KINGSTON	MAPLEWOOD	Ramsey	29	22	14	151 r	null r	ull	4
568241	1 MW-9 RAMSEY COUNTY	1759 WHITE BEAR AV	MAPLEWOOD	Ramsey	29	22	14	35 r	null	20	2
598974	4 IDS #625	1863 CLEAR AV	ST PAUL	Ramsey	29	22	23	49 r	null	51	16
	7 HAYDEN HEIGHTS BAP CHRCH	1298 VAN DYKE ST	ST PAUL	Ramsey	29	22	23	13 r	null	13	16
279810) JENNING, WEYEN	1926 PRISE ST	RAMSEY	Ramsey	29	22	14	190 r	null r	ull	null
320171	1 HARMS, JESSE	2100 IDAHO AV E	ST PAUL	Ramsey	29	22	23	140	1004 r	ull	null
1580 MCKNIGHT RD N	WENDT, MARY JO	1580 MCKNIGHT RD N	ST PAUL	Ramsey	29	22	14 n	ull	1027 r	ull	null
1635 WINTHROP ST N	RICHARDSON, EUGENE	1635 WINTHROP ST N	ST PAUL	Ramsey	29	22	23 n		1024 r		null
1652 WINTHROP ST N	BARRETT, KENNETH	1652 WINTHROP ST N	ST PAUL	Ramsey	29	22	23 n	ull	1034 r	ull	null

Owner	Address	City	Zip	Property Address	Property City		Is there a water well on your property, or has a well been located on your property in the past?	If yes, what was/is use?	Was well sealed?	seal date	Specific details on construction of well	Basement	Sump	Other (description)	Petroleum Sources?	Unique Well Number
Mary Jo Wendt	1580 McKnight Rd N	Maplewood	55119	1580 McKnight Rd N	Maplewood	55119		All household water	NO	NA	90 years old	YES	NO	NO	NO	Not listed
Eugene E Richardson	1635 Winthrop St N	St Paul	55119	1635 Winthrop St N	St Paul	55119	YES	Irrigation	NO	NA	Pump in basement under outdoor deck	YES	NO	NA	NO	Not listed
Kenneth Barrett	1652 Winthrop St N	St Paul	55119	1652 Winthrop St N	St Paul	55119	YES	Irrigation	NO	NA	Drilled in 1920s, submersible pump insta	YES	YES	NA	NO	Not listed
Thor James Sohlstrom	2139 Cottage Ave E	St Paul	55119	2139 Cottage Ave E	St Paul	55119	NO	NA	NA	NA	NA .	YES	NO	NO	NO	NA.
Bruce Jerome	1637 Currie St	Maplewood	55119	1637 Currie St	Maplewood	55119	NO .	NA	NA	NA	NA	YES	YES	NA	NO	NA
Jesse Harms	2100 Idaho St	St Paul	55119	2100 Idaho St	St Paul	55119	YES (2 wells)	All household water	YES	2014	Old well sealed in 2014 (140 ft deep), ne	NA.	NA	NA		OLD 320171, NEW 801672
Jake Johnson Stokman	2225 Larpenteur Ave	Maplewood	55109	2225 Larpenteur Ave E	Maplewood	55109		NA	NA	NA		YES	NO		NO	NA.
John Posus	2142 E Arlington Ave	Saint Paul	55119	2142 E Arlington Ave	Saint Paul	55119	NO .	NA	NA	NA	NA	YES	NO	NO	NO	NA.
Marcia C Kircher Truste	2139 Clear Ave	Saint Paul	55119	2139 Clear Ave	Saint Paul	55119	NO	NA	NA	NA	NA .	YES	NO	NO	NO	NA.
Gary A Mohrlant Truste	23030 Montana Ave	Maplewood	55119	23030 Montana Ave E	Maplewood	55119	NO .	NA	NA	NA	NA	YES	NO	NO	NO	NA
Carol A Soderberg	2156 Larpenteur Ave	Saint Paul	55109	2156 Larpenteur Ave E	Saint Paul	55109	NO .	NA.	NA	NA		YES	NO		NO	NA.
Monica R Moriarty	PO BOX 154	Lake Elmo	55042	2140 Nebraska Ave E	Saint Paul	55119	NO .	NA	NA	NA	NA	YES	NO	NO	NO	NA.
John J Crea	2139 Ivy Ave E	Saint Paul			Saint Paul	55119		NA	NA	NA		YES	YES		NO	NA.
Jay T Kelly	1643 Currie St N	Maplewood	55119	1643 Currie St N	Maplewood	55119	NO	NA	NA	NA	NA .	YES	NO	NO	NO	NA.
Aung Than	2152 Larpenteur Ave	Maplewood	55109	2152 Larpenteur Ave E	Maplewood	55109	NO .	NA	NA	NA	NA	YES	NO	NO	NO	NA
Jillian Tegdesch	2140 Clear Ave	Saint Paul	55119	2140 Clear Ave	Saint Paul	55119	NO NO	NA.	NA	NA	NA .	YES	NO	NO	NO	NA
Mary A Crandall	2142 Cottage Ave E	Saint Paul	55119	2142 Cottage Ave E	Saint Paul	55119	NO NO	NA.	NA	NA	NA .	YES	YES	NO	NO	NA
Property Owner	400 Wabasha St N ST	Saint Paul	55102	2200 Larpenteur Ave E	saint Paul	55109	YES	Irrigation	NO	NA	metal casing, in well head pumphouse	YES	YES	YES (in vacant clubhous	NO	Not Listed
Robert Christenson	2196 Ivy Ave E	Saint Paul	55119	2196 Ivy Ave E	Saint Paul	55119	NO	NA.	NA	NA	NA	YES	NO	NO	NO	NA
Brianna C Frisch	2148 Larpenteur Ave	Saint Paul	55109	2148 Larpenteur Ave E	Saint Paul	55109	NO .	NA.	NA	NA	NA	YES	YES	NO	NO	NA
Thomas P Stephanie	1628 McKnight Rd N	Saint Paul	55119	1628 McKnight Rd N	Saint Paul	55119	NO .	NA.	NA	NA	NA .	YES	YES	NO	NO	NA .
Gary L Williams	2133 Nebraska Ave E	Saint Paul	55119	2133 Nebraska Ave E	Saint Paul	55119	NO.	NA	NA	NA	NA .	YES	YES	ON	NO	NA

200875

County Ramsey

Quad St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 08/14/1991 03/03/2022

HE-01205-15

Received Date

Well Name Well Depth Date Well Completed Township Range Dir Section Subsection Depth Completed ACORN GREEN 22 W 24 **BCBDB** 561 ft. 561 ft. 7.5 minute topographic map (+/- 5 feet) **Drill Method** Elevation 1020 Elev. Method Drill Fluid Address Use Status Active domestic Well Hydrofractured? C/W MN Yes No From To Casing Type **Joint Drive Shoe?** Stratigraphy Information Yes Above/Below Geological Material From To (ft.) Color Hardness DRIFT 0 148 PLATTEVILLE 148 184 SOAPSTONE 184 189 SANDSTONE 189 280 SOAPSTONE 280 282 Open Hole То From ft. ft. SANDSTONE 282 346 Make Screen? Type SHAKOPEE 346 474 SANDSTONE 474 560 ST LAWRENCE 560 561 Static Water Level Pumping Level (below land surface) Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information** Not Specified **Nearest Known Source of Contamination** Direction feet Type Well disinfected upon completion? Yes No Pump Date Installed Not Installed Manufacturer's name HP Model Number Volt Length of drop pipe Capacity g.p. Typ Abandoned Does property have any not in use and not sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No Miscellaneous First Bedrock Platteville Formation Aquifer Last Strat St.Lawrence Formation Depth to Bedrock 148 ft Located by Minnesota Geological Survey Remarks Locate Method Digitized - scale 1:24,000 or larger (Digitizing Table) UTM - NAD83, Zone 15, Meters X 499737 System Y 4981568 Unique Number Verification Input Date 01/01/1990 **Angled Drill Hole** Well Contractor Hoge Well Co. HOGE Licensee Business Lic. or Reg. No. Name of Driller 200875 Printed on 06/01/2022 Minnesota Well Index Report

200876

County Ramsey

Quad St Paul East
Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

08/14/1991

HE-01205-15

Update Date 03/03/2022

Well Name Township Range Dir Section Subsection YAEGER 29 22 W 24 CCACA	on Well Depth 103 ft.	Depth Completed Date Well Completed 103 ft. 09/23/1931
Elevation 1015 Elev. Method 7.5 minute topographic map (+.		
Address	Use dome	
C/W STILLWATER RD ST PAUL MN	Well Hydrof	
	Casing Typ	100 110 110 110
Stratigraphy Information	Drive Shoe	
	Hardness Casing Dian	eter Weight
DRIFT, MOSTLEY CLAY 0 96	4.5 in. To	96 ft. lbs./ft.
LIMEROCK 96 103		
	- W.	
	Open Hole Screen?	From ft. To ft. Type Make
	Screen.	
	Ct. 11. 337. 1	
	Static Wate 39 ft.	top of casing Measure 09/23/1931
	37 11.	top of easing Measure 07/25/1751
	Pumping L	evel (below land surface)
	Wellhead (Completion er manufacturer Model
		Protection
	At-gra	de (Environmental Wells and Borings ONLY)
	Grouting In	formation Well Grouted? Yes No Not Specified
		own Source of Contamination
		Type cected upon completion? Yes No
	Pump Manufactur	Not Installed Date Installed
	Model Num	
	Length of d	<u> -</u>
	Abandoned	
		ty have any not in use and not sealed well(s)? Yes No
	Variance Was a varia	nce granted from the MDH for this well?
	Miscellane	
	First Bedroo	
	Last Strat	Platteville Formation Depth to Bedrock 96 ft
Remarks	Located by Locate Meth	Minnesota Geological Survey od Digitized - scale 1:24,000 or larger (Digitizing Table)
ABANDONED	System	UTM - NAD83, Zone 15, Meters X 499896 Y 4980758
	Unique Nun	ber Verification Input Date 01/01/1990
	Angled Dri	l Hole
	Well Conti	
	Keys We	
	<u> </u>	220.0.100.100.100.100.100.100.100.100.10
Minnesota Well Index Report	200876	Printed on 06/01/2022

208231

County Ramsey

Quad St Paul East
Quad ID 103A

WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

MINNESOTA DEPARTMENT OF HEALTH

Entry Date

08/14/1991

HE-01205-15

Update Date 03/03/2022

Well Name Township Ran	_	Subsection	Well Dep		Date Well Completed
HILLCREST 29 22	W 23	AABACD	550 ft.	550 ft.	
Elevation 1040 Elev. Method	7.5 minute topogra	aphic map (+/- 5 fe		cuote 1001	Drill Fluid
Address			Use con		Status Sealed
Contact 2200 LARPENTEU	JR AV ST PAUL MI	N 55109	Well Hydr	10	From To
Stratigraphy Information			Casing Ty Drive Sho		Joint Above/Below
Stratigraphy Information Geological Material From	om To (ft.) Co	lor Hardı			Above/Delow
DRIFT 0	165		8 in. To		
PLATTEVILLE 16	55 190		0 III. 1	323 11. 103.71.	
ST. PETER 19	90 350				
SHAKOPEE 35	50 382				
NEW RICHMOND 38	395		0 77 1		
ONEOTA 39	95 490		Open Hol	525	To 550 ft. Make
JORDAN 49	90 550		Screen?	Туре	iviane
			Static Wa 205 ft	er Level land surface	Measure 09/13/1999
			Pumping	Level (below land surface)	
			Wellhead	Completion	
				oter manufacturer	Model
					above grade
				ade (Environmental Wells and Bori Information Well Grouted?	Yes No Not Specified
				nown Source of Contamination feet Direction affected upon completion?	Type No
			Pump Manufact	Not Installed Dater's name	te Installed
			Model Nu	mber HP	Volt
			Length of	drop pipe ft Capacity	g.p. Typ
			Abandon Does prop	d erty have any not in use and not sealed w	vell(s)? Yes No
			Variance Was a var	ance granted from the MDH for this well	1?
			Miscellar	eous	
			First Bedr Last Strat Located b	Jordan Sandstone	Aquifer St.Peter-Jordan Depth to Bedrock 165 ft urvey
Remarks WELL SEALED 9-13-1999. BY KEYS W. LOG IN MGS BULL. NO. 28 P. 252.	ELL CO. H-141981.		Locate Mo System	UTM - NAD83, Zone 15, Meters	0 or larger (Digitizing Table) X 499340 Y 4981941
WELL SEALED 09-13-1999 BY 62012			Angled D	mber Verification Information	n from Input Date 01/01/1990
			Well Con	ractor	
				Max Well Co.	27246
					or Reg. No. Name of Driller
Minnesota Well Index Re	port		208231		Printed on 06/01/2022

225684

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date

08/14/1991 03/03/2022

HE-01205-15

Received Date

Well Name Dir Section Subsection Well Depth Depth Completed **Date Well Completed** Township Range н. н. witte 22 W 23 194 ft. 194 ft. 12/12/1936 ABBBAA **Drill Method** 1007 Elevation Elev. Method **Drill Fluid** LiDAR 1m DEM (MNDNR) Address Use unknown Status Active C/W Well Hydrofractured? 2044 LARPENTEUR AV E MN Yes From No To Joint Casing Type Single casing **Drive Shoe?** No Yes Above/Below Stratigraphy Information To (ft.) Color Hardness Geological Material From **Casing Diameter** Weight STONE & CLAY 0 10 4.5 in. To 134 ft. lbs./ft. CLAY 10 36 MUDDY WATER & 36 44 CLAY 44 53 HARDPAN 53 85 Open Hole To 194 ft. From ft. 134 CLAY WITH GRAVEL 85 129 Make Screen? Type QUICK SAND 129 131 ROTTEN LIMEROCK 131 134 ROTTEN LIMEROCK 134 160 SOAPSTONE 160 164 Static Water Level SANDSTONE 164 194 12/12/1936 ft. land surface Measure Pumping Level (below land surface) Pumping at 7 g.p.m. Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information** Yes No Not Specified Nearest Known Source of Contamination Direction feet Type Well disinfected upon completion? Yes No Pump Not Installed Date Installed Manufacturer's name HP Model Number Volt Length of drop pipe ft Capacity g.p. Тур Abandoned Does property have any not in use and not sealed well(s)? Yes No Variance Yes Was a variance granted from the MDH for this well? No Miscellaneous First Bedrock Platteville Formation Aquifer Platteville-St. Last Strat Depth to Bedrock St.Peter Sandstone ft Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters System X 498909 Y 4982041 Unique Number Verification Address verification Input Date 01/01/1990 Angled Drill Hole Well Contractor Keys Well Co. 62012 Licensee Business Lic. or Reg. No. Name of Driller 225684 Printed on 06/01/2022 Minnesota Well Index Report

233597

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

08/14/1991

Update Date 03/03/2022

Well Name	Township	Range	Dir Section	Subsection BBDBCA	Well Depth	•	th Completed	Date Well	Completed	
Elevation	29 1037 Elev. Met	22 thod	W 24 LiDAR 1m DEM		148 ft. Drill Method	148 f		Drill Fluid		
Address	ios/ Elev. Wee	illou	LIDAK IIII DEWI	(MINDINK)	Use dome	stic		Di ili Fiulu	Status	Active
C/W	1605 MYRTL	E ST MN			Well Hydrofr		Yes No	From		
Ci II	1003 1411112	L DI IVII V			Casing Type			Joint	То	
Stratigraphy	Information				Drive Shoe?		No	Above/Below		
Geological M	I aterial	From	To (ft.) Co	lor Hardness						
DRIFT LIMESTONI	F	0 148	148 148							
LIMESTON	<u> </u>	140	140							
					Open Hole	From	ft.	То	ft.	
					Screen?	Tom		Make	11.	
					Static Water	r Level				
					Pumping Le	evel (below land s	urface)			
						`	,			
					Wellhead C	ompletion				
					Pitless adapte	r manufacturer		Mod	el	
					Casing At-grad	Protection le (Environmental	☐ 12 in. Wells and Bori	above grade		
					Grouting In		Vell Grouted?	Yes No	Not S	pecified
									_	
					Nearest Kno	own Source of Co	ntamination			
							Direction	_		Type
						ected upon comple		Yes	No	
					Pump Manufacture	Not Insta	alled Dat	te Installed		
					Model Numb		HP	Volt		
					Length of dro	op pipe	ft Capacity	g.p. Ty	p	
					Abandoned Does propert	y have any not in use	e and not sealed w	ell(s)?	Yes	No
					Variance	, ,				
					Was a varian	ce granted from the l	MDH for this well	?	Yes [No
					Miscellaneo					
					First Bedrock Last Strat	Platteville For		Aquifer Depth to Bedro	ck 148	ft
					Located by		ta Geological Su	-	140	11
Remarks					Locate Metho	od Digitizati	on (Screen) - M	ap (1:24,000) (15 r		
					System Unique Num	UTM - NAD83, 2 ber Verification	Zone 15, Meters Address ver	X 499834		31801 /01/1990
					Angled Dril		Address ver	inication		/01/1990
					Well Contra	actor				
					Mcculloug			82054	N	'11
					Licensee I	Business	Lic. o	r Reg. No.	Name of D	riller
					233597					0.5/21/5-5-
Minneso	ta Well Index	Repor	t							on 06/01/2022

233715

County Ramsey

Quad ID St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 05/20/1991 02/25/2022

HE-01205-15

Received Date

Well Name Well Depth Depth Completed Date Well Completed Township Range Dir Section Subsection 29 22 W 14 DCDDCC 137 ft. 137 ft. 7.5 minute topographic map (+/- 5 feet) **Drill Method** 998 ft. Elev. Method Drill Fluid Elevation Address Use Status Active domestic C/W Well Hydrofractured? BEEBEE RD MN Yes No From To Casing Type **Joint Drive Shoe?** Stratigraphy Information Yes Above/Below Geological Material From To (ft.) Color Hardness 0 DRIFT 137 LIMESTONE 137 137 Open Hole То ft. From ft. Make Screen? Type Static Water Level Pumping Level (below land surface) Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information** Not Specified **Nearest Known Source of Contamination** Direction feet Type Well disinfected upon completion? Yes No Pump Date Installed Not Installed Manufacturer's name HP Model Number Volt Length of drop pipe Capacity Typ g.p. Abandoned Does property have any not in use and not sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No Miscellaneous First Bedrock Platteville Formation Aquifer Last Strat Platteville Formation Depth to Bedrock 137 ft Located by Minnesota Geological Survey Remarks Digitized - scale 1:24,000 or larger (Digitizing Table) Locate Method LARPENTAR & BEEBEE RD. UTM - NAD83, Zone 15, Meters System Y 4982071 X 499108 Unique Number Verification Input Date 01/01/1990 **Angled Drill Hole** Well Contractor Hoge Well Co. HOGE Licensee Business Lic. or Reg. No. Name of Driller 233715 Printed on 06/01/2022 Minnesota Well Index Report

233838

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 05/20/1991 03/03/2022

Well Name	_	Range	Dir Section		l	Well Depth		Depth Completed	Date We	ell Completed	
	29	22	W 24	BBACAB		137 ft.	1	37 ft.			
Elevation	1024 Elev. Me	ethod	LiDAR 1m DEM	I (MNDNR)		Drill Method			Drill Fluid		
Address						Use domes				Status	Active
C/W	1641 MYRTI	LE ST ST	PAUL MN			Well Hydrofra		Yes No	From	То	
Stratigranh	y Information					Casing Type Drive Shoe?		No	Joint Above/Below		
Geological M		From	To (ft.)	olor Ha	rdness	ZIIVE SIIGEV		110	Above/Delow		
DRIFT		0	120								
LIMESTON	ΙE	120	137								
						Open Hole Screen?	From	ft. Type	To Make	ft.	
						Screen.		Турс	Make		
						Static Water	T oval				
						Static Water	Level				
						D . T	1011	1 6			
						Pumping Le	vel (below lar	ia suriace)			
						Wellhead Co	amplation				
							r manufacturer		Me	odel	
							Protection		above grade		
						Grouting Inf		mtal Wells and Bor Well Grouted?	Yes No	Not S	pecified
						or ouring in					peemea
						Nearest Kno	own Source of	f Contamination			
							eet	Direction			Type
						Well disinfe	ected upon con	npletion?	Yes	No	
						Pump Manufacturer		Installed Da	te Installed		
						Model Numb		HP <u>0</u>	Vol	t	
						Length of dro	op pipe	ft Capacity		Тур	
						Abandoned	v have any not is	n use and not sealed w	va11(a)9		
						Variance	y nave any not n	ii use and not sealed w	/eli(s):	Yes	No
							ce granted from	the MDH for this wel	1?	Yes	☐ No
						Miscellaneo	us				
						First Bedrock	I lutto ville	Formation	Aquifer	ll. 100	c
						Last Strat Located by		e Formation esota Geological S	Depth to Bed	drock 120	ft
Remarks						Locate Metho	od Digiti	zation (Screen) - M		5 meters or	
						System	UTM - NAD ber Verification	983, Zone 15, Meters	X 4998		
						Angled Drill		Address ve	erification	put Date 01	/01/1990
						Ingica Dilli					
						Well Contra	actor				
						Hoge Well			HOGE		
						Licensee B	Business	Lic. o	or Reg. No.	Name of D	riller
					233	838					
Minneso	ota Well Index	Repor	rt							Printed of	on 06/01/2022 HE-01205-15

242944

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date

10/12/1990 02/25/2022

Well Name Township Range Dir Section Subsection PETERSON 29 22 W 14 DDDCBC		Depth Completed Date Well Completed 166 ft.
Elevation 1020 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	Drill Fluid
Address	Use dome	
C/W 1702 HOWARD ST MAPLEWOOD MN 55109	Well Hydrofr	4 10
1702 HOWING ST WILL EL WOOD MIN 3310)	Casing Type	1010101010
Stratigraphy Information	Drive Shoe?	Yes No Above/Below
	Iardness Casing Diam	eter Weight
GLACIAL DRIFT 0 144	6 in. To	147 ft. lbs./ft.
PLATTEVILLE 144 162		
GLENWOOD SHALE 162 166		
	Open Hole	From 147 ft. To 166 ft.
	Screen? [Type Make
	Static Water	Level
	35 ft.	land surface Measure 08/15/1990
	Pumping Le	vel (below land surface)
	Wellhead C	ompletion
		r manufacturer Model
		Protection 12 in. above grade
	Grouting In	le (Environmental Wells and Borings ONLY) formation Well Grouted? Yes No Not Specified
	f	eet Direction Type
	Pump	ceted upon completion? Yes No Not Installed Date Installed
	Manufacture Model Numb	
	Length of dr	
	Abandoned	
	Does propert	y have any not in use and not sealed well(s)? Yes No
	Variance	A LC ALMONG ALL HO VICE VICE VICE VICE VICE VICE VICE VICE
		ce granted from the MDH for this well? Yes No
	Miscellaneo First Bedrock	
	Last Strat	Glenwood Formation Depth to Bedrock 144 ft
Dalso	Located by	Minnesota Geological Survey
Remarks GAMMA LOGGED 8-15-1990.	Locate Metho	Digitization (Sereen) Trup (1.2 1,000) (15 meters of
	System Unique Num	UTM - NAD83, Zone 15, Meters X 499426 Y 4982137 per Verification Information from Input Date 01/01/1990
	Angled Dril	31,01,1550
	Well Contra	ector
		Geological Survey MGS
	Licensee I	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	242944	Printed on 06/01/2022

244951

County Ramsey

Quad ID St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 11/20/1992 03/03/2022

Well Name	_	Range	Dir Section	Subsection	Well Depth	Depth Completed	Date Well	Completed	
Floration	29 981 ft. Elev. Me	22	W 24	CCDCDD	107 ft. Drill Method	107 ft.	Duill Eluid		
Elevation Address	981 II. Elev. Me	etilou —	LiDAR 1m DEM	(MNDNR)	Use dome.	ntia	Drill Fluid	Status	Inactive
	2245 MADV	L AND M	AT.		Well Hydrofr	. 10			mactive
C/W	2345 MARY	LAND MI	N		Casing Type	100	From	То	
Stratigraph	y Information				Drive Shoe?	Single casing Yes No	Above/Below	0 ft.	
Geological N		From	To (ft.) Co	lor Hardı			110010,1201011		
GLACIAL I		0	99		3 in. To	ft. lbs./ft.			
GLENWOO	DD SHALE	99	107						
					Open Hole	From ft.	То	ft.	
					Screen?	Туре	Make		
					Static Water			00/06/1001	
					30 ft.	land surface	Measure	08/26/1991	
					Pumping Le	vel (below land surface)			
					Wellhead C	=			
						r manufacturer	Mod	lel	
						Protection 12 in le (Environmental Wells and Bor	n. above grade rings ONLY)		
					Grouting In		Yes No	Not Sp	pecified
					Nearest Kno	own Source of Contamination			
						eet Direction			Type
					-	ected upon completion?	Yes	No	
					Pump Manufacture		ate Installed		
					Model Numb		0 Volt		
					Length of dro	-	g.p. Ty	/p	
					Abandoned				
						y have any not in use and not sealed	well(s)?	Yes	No
					Variance Was a varian	ce granted from the MDH for this we	:11?	Yes	No
					Miscellaneo				
					First Bedrock		Aquifer G	lenwood	
					Last Strat	Glenwood Formation	Depth to Bedro	ock 99	ft
Remarks					Located by Locate Metho	Minnesota Geological S Digitization (Screen) - N		maters or	
GAMMA LO	OGGED 8-26-91.				System	UTM - NAD83, Zone 15, Meters			0475
					Unique Numb	per Verification Information	on from Inpu	t Date 07/	19/1996
					Angled Dril	Hole			
					Well Contra				
					Minnesota Licensee F	Geological Survey	MGS or Reg. No.	Name of Dr	iller
					Licensee I	Lic.	or 10g. 110.	rame of Di	11101
3.51					244951			Duintad -	n 06/01/2022
Minneso	ota Well Index	Kepor	rt						n 06/01/2022 HF-01205-15

247124

County Ramsey

Quad ID St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 02/24/1994 02/25/2022

Well Name Township 29	Range 22		Subsection DDDDAC	Well Depth 176 ft.	Depth Completed 176 ft.	Date Wel	l Completed	
Elevation 1022 Elev. M		.5 minute topograpl		Drill Method	1701t.	Drill Fluid		
ddress				Use domestic			Status	Inactive
C/W 1709 MCKN	IIGHT RD M	MAPLEWOOD M	IN 55109	Well Hydrofractured	d? Yes No	From	То	
					Single casing	Joint	10	
tratigraphy Information				Drive Shoe? Ye		Above/Below		
Geological Material	From	To (ft.) Colo	r Hardness	Casing Diameter	Weight			
GLACIAL DRIFT	0	150		3 in. To 152	ft. lbs./ft.			
LATTEVILLE	150	160						
GLENWOOD SHALE T. PETER	160 167	167 176						
OI. TETEK	107	170						
				Open Hole Fi	rom 152 ft. Type	To 176 Make	ft.	
				Static Water Leve 29 ft. lan	el nd surface	Measure	01/08/1992	
				Pumping Level (be	elow land surface)			
				Wellhead Comple Pitless adapter manuf		Mod	del	
				Casing Protect At-grade (Env	etion 12 in vironmental Wells and Bor	. above grade		
				feet	ource of Contamination Direction	F	7	Type
				Well disinfected u	Not Installed Da	Yes nte Installed	No	
				Manufacturer's name		77. 1.		
				Model Number Length of drop pipe	HP ft Capacity	Volt g.p. T	yp	
				Abandoned	It says	5.P. 1	J P	
				Does property have	any not in use and not sealed v	vell(s)?	Yes	No
				Variance Was a variance gran	ated from the MDH for this we	11?	Yes	No
				Miscellaneous First Bedrock	latteville Formation	Aguifer F	latteville-St.	
				1.	t.Peter Sandstone Minnesota Geological S	Depth to Bedr		ft
Remarks GAMMA LOGGED 1-8-1992.				Locate Method System UT Unique Number Ver	Digitization (Screen) - M M - NAD83, Zone 15, Meters	Map (1:24,000) (15 X 49956	3 Y 4982	120 9/1996
				Angled Drill Hole	momuno	n nom — mpc	07/1) I I J 7 U
				Well Contractor Minnesota Geold		MGS	Nome of D	llor
				Licensee Busines	ss Lic. (or Reg. No.	Name of Dri	пег
Minnesota Well Inde	x Report		24	17124				06/01/2022 E-01205-15

249742

County Ramsey

Quad Lake Elmo Quad ID 102B

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 06/14/1994 03/03/2022

HE-01205-15

Well Name	Township Range		Subsection	Well Depth	Depth Completed	d Date Well Com	pleted
OLSEN, BRUCE	29 22	W 24	BAABCC	117 ft.	117 ft.		
Elevation 1022	Elev. Method	7.5 minute topograp	phic map (+/- 5 feet)	Drill Method	Cable Tool	Drill Fluid	
Address				Use domes	stic	St	atus Active
C/W	2444 LARPENTEUR	AV E MAPLEWO	OD MN	Well Hydrofra	actured? Yes No	From	То
				Casing Type		Joint	
Stratigraphy Info Geological Materia		To (ft.) Cole	or Hardness	Drive Shoe?		Above/Below 0 ft	i <u>.</u>
GLACIAL DRIFT		117	n Hardiess	Casing Diame	eter Weight 117 ft. lbs./ft.		
	•			4 111. 10	117 It. 108./It.		
				Open Hole	From ft.	To ft.	
				Screen?	Type	Make	
				Static Water	Level		
				33 ft.	land surface	Measure 06/07	7/1994
				Pumning Le	vel (below land surface)		
				Tumping Le	ver (below land surface)		
				Wellhead Co	ompletion		
					r manufacturer	Model	
						in. above grade	
				Grouting Inf	le (Environmental Wells and Bo formation Well Grouted?	orings ONLY) Yes No	Not Specified
				Grouing III	ormation wen Grouteus	les livo	Not specified
					own Source of Contamination Direction	!	T.
					eet Direction ected upon completion?	Yes No	Туре
				Pump		Date Installed	
				Manufacturer			
				Model Numb		<u>0</u> Volt	
				Length of dro Abandoned	op pipe ft Capacity	g.p. Typ	
					y have any not in use and not sealed	l well(s)?	Yes No
				Variance			<u> </u>
				Was a variand	ce granted from the MDH for this w	vell? Yes	s No
				Miscellaneou			
				First Bedrock Last Strat	Quaternary deposit	Aquifer Quatern Depth to Bedrock	nary ft
				Located by	Minnesota Geological	-	
Remarks GAMMA LOGGED	6-7-1994			Locate Metho	8	Map (1:24,000) (15 meters	
GAMMA LOGGED	0-7-1994.			System Unique Numb	UTM - NAD83, Zone 15, Meter ber Verification Informati	* * *	Y 4981991
				Angled Drill		ion from input Date	10/15/1998
				ingica Dilli	LIVIC		
				Well Contra			
					Geological Survey	MGS	
				Licensee B			ne of Driller
				07.42			
Minnesota V	Vell Index Repo	ort	249	9742		!	Printed on 06/01/2022

249752

County Ramsey

Quad Lake Elmo

Quad ID 102B

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 06/28/1994 03/03/2022

Well Name		Γownship	Range	Dir Section			Well Depth	_	h Completed	Date Wo	ell Completed	
JUNEK, ED		29 - El Ma	22	W 24	BABA		151 ft. Drill Method	151 ft		D THE !		
Elevation Address	1017	Elev. Me	tnoa	LiDAR 1m DE	M (MNDNR))				Drill Fluid	Status	Antivo
						_	Use dome				Status	Active
C/W	24	36 LARPE	NTEUR A	AV E MAPLEV	WOOD MN	•	Well Hydrofr		res No	From	То	
Stratigraph	v Inform	nation					Casing Type Drive Shoe?		No	Joint Above/Below		
Geological M		nation	From	To (ft.)	Color	Hardness	Casing Diam			Above/Delow		
GLACIAL I			0	122			4 in. To	138 ft.	lbs./ft.			
PLATTEVI	LLE		122	151								
							Open Hole	From 138	ft.	To 151 Make	ft.	
							Screen?		pe	Make		
							Static Water	r Level land surface		Measure	06/21/1994	
										Wiedsare	00/21/1//	
							Pumping Le	evel (below land st	ırface)			
							Wellhead C	ompletion				
								er manufacturer		M	odel	
								Protection		above grade		
							Grouting In	de (Environmental	Wells and Bori ell Grouted?	ngs ONLY) Yes No	n Not S	Specified
							Grouting in	normation	en Grouteu.		11015	pecificu
							Noowest Vn	own Source of Co	ntamination			
									Direction			Type
								ected upon comple	tion?	Yes	No	31
							Pump	Not Insta	ılled Da	te Installed		
							Manufacture Model Numb		HP <u>0</u>	Vol	lt	
							Length of dro		ft Capacity		Тур	
							Abandoned					
								ty have any not in use	and not sealed w	rell(s)?	Yes	No
							Variance Was a varian	ace granted from the N	ADH for this wel	12	Yes	□ No
							Miscellaneo					
							First Bedrock	Platteville For	rmation	Aquifer	Platteville	
							Last Strat	Platteville For		Depth to Bed	drock 122	ft
Remarks							Located by Locate Metho		a Geological St on (Screen) - M	urvey Iap (1:24,000) (1	5 meters or	
GAMMA LO	OGGED A	ND TV 6-21-	1994.				System	UTM - NAD83, 2		X 5001		82024
							Unique Numl	ber Verification	Information	n from In	put Date 06	5/02/2000
							Angled Dril	ll Hole				
							Well Contra					
								Geological Survey		MGS	Name -f D	rillor
							Licensee F	DUSIIIESS	Lic. 0	or Reg. No.	Name of D	niller
NA:	. 4 - T T7	.11 7 '	. D	4		24	9752				Printed	on 06/01/2022
Minneso	ota We	en Index	кероі	rt							Timed	HE-01205-15

249773

Minnesota Well Index Report

County Ramsey St Paul East Quad

Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date

08/24/1994 03/03/2022

HE-01205-15

Received Date

Well Name Dir Section Subsection Well Depth **Depth Completed Date Well Completed** Township Range BERRY, WAYNE 29 22 W 24 BBDADB 154 ft. 154 ft. **Drill Method** 1034 Elevation Elev. Method LiDAR 1m DEM (MNDNR) **Drill Fluid** Address Use domestic Status Unknow C/W Well Hydrofractured? 1600 MYRTLE ST MAPLEWOOD MN From No To Joint Casing Type Single casing **Drive Shoe?** No Yes Above/Below Stratigraphy Information To (ft.) Color Hardness Geological Material From **Casing Diameter** Weight GLACIAL DRIFT 0 154 4 in. To 150 ft. lbs./ft. Open Hole To ft. From ft. Screen? Type Make Diameter Slot/Gauze Length Set in. 0 ft. 150 ft. 154 ft. Static Water Level 08/16/1994 ft. land surface Measure Pumping Level (below land surface) Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information** Yes No Not Specified Nearest Known Source of Contamination Direction feet Type Well disinfected upon completion? Yes No Pump Not Installed Date Installed Manufacturer's name HP Model Number Volt Length of drop pipe ft Capacity Тур g.p. Abandoned Does property have any not in use and not sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No Miscellaneous First Bedrock Aquifer Quaternary Last Strat Depth to Bedrock ft Quaternary deposit Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or GAMMA LOGGED 8-16-1994. UTM - NAD83, Zone 15, Meters System Y 4981806 X 499965 Unique Number Verification Information from Input Date 07/19/1996 Angled Drill Hole Well Contractor Minnesota Geological Survey MGS Licensee Business Lic. or Reg. No. Name of Driller 249773 Printed on 06/01/2022

256956

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

02/15/2006

Update Date 02/25/2022

Well Name Township Range Dir Section Subsection 29 22 W 14 DDBDAC	_	Depth Completed Date Well Completed 160 ft.
Elevation 1016 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	
Address	Use dome	
Well 1759 HOWARD ST N MAPLEWOOD MN 55109	Well Hydrofr	ractured? Yes No From To
	Casing Type	
Stratigraphy Information	Drive Shoe?	? Yes No Above/Below
. ,	ardness Casing Diam	
GLACIAL DRIFT 0 130 PLATTEVILLE 130 160	4.5 in. To	136 ft. lbs./ft.
I EATTE VIELE 130 100		
	Open Hole	From 136 ft. To 160 ft.
	Screen?	From 136 ft. To 160 ft. Type Make
	Static Wate	r Level
	49 ft.	land surface Measure 02/15/2005
	Dumming L	and (below land autoes)
	rumping Le	evel (below land surface)
	Wellhead C	**************************************
		er manufacturer Model
	Casing	Protection 12 in. above grade
	Grouting In	de (Environmental Wells and Borings ONLY) formation Well Grouted? Yes No Not Specified
	Grouting In	Tot specified
	NT 4 TZ .	
		own Source of Contamination feet Direction Type
		ected upon completion? Yes No
	Pump	Not Installed Date Installed
	Manufacture	
	Model Numl Length of dr	7 011
	Abandoned	
	Does proper	ty have any not in use and not sealed well(s)? Yes No
	Variance	V V
		nce granted from the MDH for this well? Yes No
	Miscellaneo First Bedrocl	
	Last Strat	Platteville Formation Depth to Bedrock 130 ft
Remarks	Located by	Minnesota Geological Survey
GAMMA LOGGED 2-15-2006. LOGGED FOR TOM GALLAGHER.	Locate Methors System	od Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters X 499370 Y 4982330
	*	ther Verification Information from Input Date 02/15/2006
	Angled Dril	
	Well Contra	actor
		a Geological Survey MGS
	Licensee I	Business Lic. or Reg. No. Name of Driller
	256956	
Minnesota Well Index Report	20000	Printed on 06/01/202 HE-01205-1

272001

Minnesota Well Index Report

Ramsey County Ouad

St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 06/29/2011 02/25/2022

Printed on 06/01/2022

HE-01205-15

Received Date

Well Name Well Depth **Date Well Completed** Township Range Dir Section Subsection Depth Completed 29 22 W 14 DDCCDA 256 ft. 256 ft. 11/07/1962 7.5 minute topographic map (+/- 5 feet) **Drill Method** 1021 Elev. Method Drill Fluid Elevation Address Use domestic Status Sealed Well Well Hydrofractured? 2169 LARPENTEUR AV E MAPLEWOOD MN 55109 Yes No From To Casing Type Telescoping **Joint Drive Shoe?** Stratigraphy Information Yes No Above/Below Geological Material From To (ft.) Color Hardness **Casing Diameter** Weight CLAY 0 49 **BROWN** in. To 229 ft. lbs./ft. ROCK 49 72 YELLOW 5 in. To 145 ft. lbs./ft. SOAPSTONE 72 145 GRAY LIMEROCK 145 153 **GRAY** LIMEROCK 153 170 **GRAY** Open Hole То 256 From ft. ft. 229 LIMEROCK 170 172 GRAY Make Screen? Type SANDROCK 172 175 WHITE SANDROCK 175 256 WHITE Static Water Level ft. 06/29/2011 land surface Measure Pumping Level (below land surface) ft. hrs. Pumping at 15 g.p.m. Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information** Yes Not Specified **Nearest Known Source of Contamination** Direction feet Type Well disinfected upon completion? Yes No Pump Date Installed 11/07/1962 Not Installed Manufacturer's name STARITE Model Number HP 0.75 Volt Length of drop pipe Capacity 190 ft g.p. Typ Submersible Abandoned Does property have any not in use and not sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No Miscellaneous First Bedrock Platteville Formation Aquifer St.Peter Last Strat St.Peter Sandstone Depth to Bedrock 153 ft Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or GAMMA LOGGED 6-29-2011 FOR MDH. UTM - NAD83, Zone 15, Meters System X 499309 Y 4982097 SEALED 07-31-2011 BY 1506 Unique Number Verification Input Date Information from 06/29/2011 **Angled Drill Hole** Well Contractor Zuercher Well Co. 62028 MCCLELLAN, N. Licensee Business Lic. or Reg. No. Name of Driller 272001

278585

Minnesota Well Index Report

County Ramsey

St Paul East Ouad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 12/09/2014 **Update Date**

Received Date

06/26/2018 11/20/2014

Printed on 06/01/2022

HE-01205-15

Well Name Dir Section Subsection Well Depth Depth Completed **Date Well Completed** Township Range SIZER, JEREMY 22 W 23 185 ft. 185 ft. 10/14/2014 29 ABDBAD **Drill Method** 1001 Elevation Non-specified Rotary Elev. Method LiDAR 1m DEM (MNDNR) Drill Fluid Other Address Use domestic Status Active C/W Well Hydrofractured? 2100 IDAHO AV E ST PAUL MN 55119 X Yes [From No To Casing Type Single casing Joint Threaded Yes X **Drive Shoe?** No Above/Below Stratigraphy Information Geological Material To (ft.) Color Hardness From **Casing Diameter** Weight Hole Diameter CLAY 0 38 **BROWN** SOFT 4 in. To 124 ft. 2 lbs./ft. 9 in. To 124 ft. SANDY CLAY 38 53 **BROWN** SOFT in. To 185 ft. CLAY ROCKS 53 120 **GRAY MEDIUM** SANDROCK 120 124 GRAY HARD LIMESTONE 124 143 GRY/WHT HARD Open Hole То 185 ft. From ft. 124 S.S SHALE 143 148 TAN/WHT MEDIUM Make Screen? Type S.S. SHALE 148 154 TAN/WHT MEDIUM S.S. SHALE 154 185 TAN/WHT MEDIUM Static Water Level 10/14/2014 135 ft. land surface Measure Pumping Level (below land surface) 148 ft. hrs. Pumping at 33 g.p.m. Wellhead Completion Pitless adapter manufacturer BAKER Model SNAPPY X 12 in. above grade Casing Protection At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information X** Yes No Not Specified Material From To Amount ft. 124 50 ft. neat cement Sacks **Nearest Known Source of Contamination** Northwes Direction feet Septic tank/drain field Type Well disinfected upon completion? Yes No X Pump Not Installed Date Installed 11/03/2014 Manufacturer's name **GRUNDFOS** HP Model Number 1.5 Volt 230 15SQE15-Length of drop pipe 140 Capacity Typ Submersible <u>15</u> g.p. Abandoned Does property have any not in use and not sealed well(s)? Yes X No Variance Was a variance granted from the MDH for this well? Yes X No Miscellaneous First Bedrock Platteville Formation Aquifer Platteville-St. Last Strat Depth to Bedrock St.Peter Sandstone ft Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:12,000) (>15 meters) GAMMA LOGGED 2-24-2015. LOGGED FOR MDH. UTM - NAD83, Zone 15, Meters System Y 4981820 X 499104 CASING DETECTOR HAD CASING AT 129 FT. AND SWL AT 136 FT. Unique Number Verification Information from Input Date 06/26/2018 THIS WELL ORIGINALLY DRILLED UNDER UNIQUE NO. 801672. Angled Drill Hole Well Contractor EH Renner and Sons, Inc. PRAUGHT, L. 1431 Licensee Business Lic. or Reg. No. Name of Driller 278585

279810

County Ramsey
Quad
Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

09/12/2018

HE-01205-15

Received Date

Update Date 09/12/2018

Well Name	Township 29	Range 22	Dir Section W 14	Subsection DCC		Well Depth 190 ft.		Depth Completed	Date 07/26	Well Completed	
JENNING, Elevation	Elev. Me		W 14	DCC		Drill Method		190 II.	Drill Fluid	/1933	
Address	Elev. Me	ınou					4 : _		Drill Fluid	Status	Active
										Status	Active
C/W	1926 PRISE S	ST RAMSI	EY MN			Well Hydrofra	ctured?	Yes No		То	
C44: I I						Casing Type Drive Shoe?	Yes	No	Joint	_	
Stratigraphy Inf Geological Mater		From	To (ft.) Co	lor Ha	ardness	Diffe Shoe:	ies	110	Above/Belov	v	
CLAY SAND		0	150								
SANDROCK		150	190								
					-	Open Hole	From	ft.	То	ft.	
					_	Screen?	7	Type	Make		
						_	_				
					9	Static Water	Level				
						160 ft.	null		Measure	07/26/1955	
						Pumping Lev			10		
						160 ft.	2.5 hrs.	Pumping at	10	g.p.m.	
						Wellhead Co Pitless adapter	_			Model	
						_	Protection	☐ 12 ii	n. above grade	Model	
						At-grade	e (Environme	ental Wells and Bo			
					•	Grouting Inf	ormation	Well Grouted?	Yes	No X Not S	Specified
						Nearest Kno	wn Source o	of Contamination			
							et	Direction			Type
						Well disinfe	cted upon co	mpletion?	Yes	No	
						Pump Manufacturer		Installed D	Date Installed		
						Model Number		HP	,	Volt	
					-	Length of dro	р ріре	ft Capacity	g.p.	Тур	
					4	Abandoned Does property	have any not	in use and not sealed	well(s)?	Yes	No
					-	Variance					
						Was a variance	e granted from	the MDH for this w	rell?	Yes	☐ No
					-	Miscellaneou	ıs				
						First Bedrock			Aquife		C.
						Last Strat Located by			Depth to	Ведгоск	ft
Remarks						Locate Method	d				
						System		D83, Zone 15, Meter	s X	Y	
						Unique Numb				Input Date	
						Angled Drill	Hole				
					-	Well Contra	oton				
							ctor ell Drilling, l	Inc.	1394		
						Licensee B			or Reg. No.	Name of D	Priller
Minnesota V	Well Index	Report	t		2798	810				Printed	on 06/01/2022

279811

County Ramsey
Quad
Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 09/12/2018 09/12/2018

Well Name KROISS, STEVE	Township 29	Range	Dir Secti W 14	on Subsect	ion	Well Depth 151 ft.		Depth Completed	Date 12/07	Well Completed	
Elevation	Elev. Met		W 14	БСВ		Drill Method	1	131 11.	Drill Fluid	1900	
Address	Elev. Me	illou					··		Drill Fluid	Status	Active
						Use domes				Status	Active
C/W	1950 KINGST	TON MAP	LEWOOD	MN		Well Hydrofra		Yes No	From	То	
G						Casing Type		NI-	Joint		
Stratigraphy Info Geological Materia		From	To (ft.)	Color	Hardness	Drive Shoe?	Yes	No	Above/Belov	7	
HARDPAN	u	0	25	BROWN	Taraness	Casing Diame	ft.	e ight lbs./ft.			
SAND		25	40	BROWN		4 111. 10	11.	108./11.			
HARDPAN		40	80	GRAY							
SOAPSTONE		80	120	BLACK							
ROCK		120	151	GRAY							
						Open Hole	From	ft.	To	ft.	
						Screen?		Туре	Make		
						Static Water	Level				
						65 ft.	null		Measure	12/07/1960	
						Pumping Le	vel (below la	nd surface)			
						10 ft.	hrs.	Pumping at	20	g.p.m.	
						Wellhead Co					
						Pitless adapter	_			Model	
							Protection	12 ir	n. above grade		
								ental Wells and Bo			
						Grouting Inf	formation	Well Grouted?	Yes	No X Not S	pecified
						Nearest Kno	own Source o	f Contamination			
							eet ected upon cor	Direction mpletion?	Yes	☐ No	Type
						Pump Manufacturer		Installed D	ate Installed		
						Model Numb		HP	V	/olt	
						Length of dro	p pipe	ft Capacity	g.p.	Typ	
						Abandoned Does property	y have any not i	n use and not sealed	wall(e)?	□ Vas	□ No
						Variance	y nave any not i	in use and not scared	well(s):	Yes	∐ No
							ce granted from	the MDH for this we	ell?	Yes	☐ No
						Miscellaneo					
						First Bedrock			Aquife	r	
						Last Strat			Depth to		ft
D						Located by					
Remarks						Locate Metho		202 7 15 16	••		
						System Unique Numb	oer Verification	D83, Zone 15, Meters	X	Y Input Date	
						Angled Drill				input Date	
						Aligieu Di li	Titole				
						Well Contra	ector				
							Vell Drilling,	Inc.	1670		
						Licensee B			or Reg. No.	Name of D	riller
Minnesota W	Vell Index	Report	·		279	811				Printed	on 06/01/2022 HF-01205-15

280508

County Ramsey
Quad
Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

04/21/2021

HE-01205-15

Received Date

Update Date 04/21/2021

Well Name	Township	Range	Dir Section		ction	Well Depth		Depth Completed		ell Completed	
BULK SERVICE	29	22	W 24	С		111 ft.	1	111 ft.	04/07/1	975	
Elevation	Elev. Me	thod				Drill Method			Drill Fluid		
Address						Use unkno	own			Status	Unknow
C/W	1300 MCKNI	GHT MN				Well Hydrofra	actured?	Yes No	From	To	
						Casing Type			Joint		
Stratigraphy Info			TF (6) G		** 1	Drive Shoe?	Yes	No	Above/Below		
Geological Materi NO RECORD	aı	From 0	To (ft.) C	olor	Hardness	Casing Diame		eight			
ROCK		96	111			4 in. To	96 ft.	lbs./ft.			
		, ,									
						O II-l-					
						Open Hole Screen?	From	96 ft. Type	To 111 Make	ft.	
						bereen.		- J po	1,20110		
						Static Water 30 ft.			Масация	04/07/1075	
						30 11.	land surfa	ice	Measure	04/07/1975	
						Pumping Le	vel (below la	nd surface)			
						Wellhead Co					
							r manufacturer			Iodel	
							Protection le (Environme	12 in ⊔ 12 in ental Wells and Bor	above grade		
						Grouting Inf		Well Grouted?	Yes N	lo X Not S	pecified
											•
						NI 4 TZ	C.	60 4 4			
							own Source o eet	of Contamination Direction			Type
							ected upon co	mpletion?	Yes	No	Турс
						Pump	Not	Installed Da	nte Installed		
						Manufacturer	's name				
						Model Numb		HP	Vo		
						Length of dro Abandoned	ор ріре	ft Capacity	g.p.	Тур	
							y have any not	in use and not sealed v	vell(s)?	Yes	No
						Variance					
						Was a variance	ce granted from	the MDH for this well	11?	Yes	☐ No
						Miscellaneou					
						First Bedrock Last Strat			Aquifer Depth to Be	drock	Ç,
						Last Strat Located by			ъерш ю Ве	MIOCK	ft
Remarks						Locate Metho	od				
						System		D83, Zone 15, Meters	X	Y	
							er Verification		It	nput Date	
						Angled Drill	l Hole				
						Well Contra			<202D		
						Zuercher, A		Lie	6202R or Reg. No.	Name of D	riller
						Licensee B		Lie.	1.06. 110.	runic of D	
Minnesota V	Vell Indev	Renort	f		280	0508				Printed	on 06/01/2022

280572

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

04/02/2021 **Update Date** 04/07/2021 **Received Date**

Well Name WOJTOWIO		F ownship	Range	Dir Secti W 14		bsection DDBCB	Well Depth 161 ft.		Depth Complete 161 ft.	d Date V	Vell Completed	
Elevation	1024	Elev. Met		LiDAR 1m D			Drill Method		101 11.	Drill Fluid	1757	
Address	1021	Zievi iviev		LIDAK III D	LIVI (IVIIVI	JINK)	Use domes	stic		Dimituu	Status	Unknow
C/W	17	14 HOWAI	RD N MN	ſ			Well Hydrofra	actured?	Yes No	From	То	
							Casing Type	Single c		Joint	10	
Stratigraph		nation					Drive Shoe?	Yes	No	Above/Below		
Geological N	Material		From	To (ft.)	Color	Hardness	Casing Diame		eight			
CLAY HARDPAN			0 14	14 135			4 in. To	148 ft.	lbs./ft.			
SAND			135	143								
ROCK			143	161								
							Onen Hele					
							Open Hole Screen?	From	148 ft. Type	To 16 Make	1 ft.	
							Berein.		1, pc	TVIUITO		
							Ct. 41. XXI. 4					
							Static Water 14 ft.	Level land surfa	ace	Measure	02/28/1957	
							14 11.	iana sarr		Medsure	02/20/1/37	
							Pumping Le					
							72 ft.	hrs.	Pumping at	10	g.p.m.	
							Wellhead Co	_				
							Pitless adapter	r manuracturer Protection	12 :	in. above grade	Model	
									ental Wells and Bo			
							Grouting Inf	formation	Well Grouted?	Yes	No Not S	pecified
							Nearest Kno	own Source o	of Contamination	1		
								eet ected upon co	Direction mpletion?	Yes	☐ No	Type
							Pump Manufacturer			Date Installed		
							Model Numb		CRANE HP	v	olt	
							Length of dro				Тур	
							Abandoned					
								y have any not	in use and not sealed	l well(s)?	Yes	No
							Variance Was a variance	ce granted from	n the MDH for this w	vell?	Yes	□ No
							Miscellaneo					
							First Bedrock			Aquifer		
							Last Strat			Depth to E	sedrock 143	ft
Remarks							Located by Locate Metho		nesota Geological tization (Screen) -	-	15 maters or	
							System	2151	D83, Zone 15, Meter			32184
							Unique Numb	er Verification	Address	verification	Input Date 04	/02/2021
							Angled Drill	Hole			<u> </u>	
							Well Contra	etor				
							Zuercher,			6202R		
							Licensee B		Lic	e. or Reg. No.	Name of D	riller
							000572					
Minneso	ota We	ell Index	Repor	t			280572					on 06/01/2022 HE-01205-15

280699

County Ramsey

St Paul East Quad Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 04/05/2021 04/21/2021

Well Name Township Range Dir Section Subsection BACCHUS, KEN 29 22 W 24 BBDBDC	Well Depth Depth Completed 189 ft. 189 ft.	Date Well Completed 08/16/1957
Elevation 1034 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	Drill Fluid
Address	Use domestic	Status Unknow
C/W 1595 MYRTLE ST MN	W-11 W-16419	
JW 1575 WIKILL ST WIK	Casing Type	Joint To
Stratigraphy Information	Drive Shoe? Yes No	Above/Below
	dness Casing Diameter Weight	
HARDPAN 0 45	4 in. To 147 ft. lbs./ft.	
CLAY 45 135 BLUE		
GRAVEL 135 147		
ROCK 147 170		
SANDROCK 170 189	Open Hole From 147 ft.	To 189 ft.
	Screen? Type	Make
	Static Water Level	
	Pumping Level (below land surface)	
	105 ft. hrs. Pumping at	10 g.p.m.
	Wellhead Completion	
	Pitless adapter manufacturer	Model
		a. above grade
	At-grade (Environmental Wells and Bo Grouting Information Well Grouted?	rings ONLY) Yes No Not Specified
	Nearest Known Source of Contamination	
	feet Direction	Туре
	Well disinfected upon completion? Pump Not Installed D	Yes No ate Installed
	Manufacturer's name STA-RITE	
		0.5 Volt
	Length of drop pipe 105 ft Capacity Abandoned	g.p. Typ
	Does property have any not in use and not sealed	well(s)? Yes No
	Variance	
	Was a variance granted from the MDH for this we	ell? Yes No
	Miscellaneous	
	First Bedrock	Aquifer
	Last Strat Located by Minnesota Geological S	Depth to Bedrock 147 ft
Remarks	Trimmesom Seoregrem	Map (1:24,000) (15 meters or
	System UTM - NAD83, Zone 15, Meters	
	Unique Number Verification Address v	rerification Input Date 04/05/2021
	Angled Drill Hole	
	Well Contractor	
	Zuercher, Al Well	6202R
	Licensee Business Lic.	or Reg. No. Name of Driller
Minnesota Well Index Report	280699	Printed on 06/01/2022

280700

County Ramsey

Quad St Paul Ea

Quad ID 103A

St Paul East

WELL AND BOK

MINNESOTA DEPARTMENT OF HEALTH
WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 04/05/2021 04/21/2021

Well Name DEMARS, CY	Township 29	Range 22	Dir Section W 24	Subsection BBACDB	Well Depth 149 ft.		epth Completed 9 ft.	Date We 12/01/19	ell Completed	
Elevation 1027	Elev. Met		LiDAR 1m DEM (Drill Method		<i>)</i> 10.	Drill Fluid	55	
Address		-			Use dome	stic			Status	Unknow
C/W	1633 MYRTL	E MN			Well Hydrofr	actured?	Yes No	From	То	
					Casing Type	e	140	Joint		
Stratigraphy Info					Drive Shoe?		No	Above/Below		
Geological Materia NO RECORD ROCK	1	From 0 142	To (ft.) Col 142 149	or Hardness	Casing Diam 4 in. To	eter Weig 142 ft.	lbs./ft.			
					Open Hole	From 14	42 ft.	To 149	ft.	
					Screen? [Type	Make		
					Static Water 48 ft.	r Level land surface	e	Measure	12/01/1955	
					Pumping Le	evel (below land	l surface)			
					Casing	r manufacturer Protection	12 in	. above grade	odel	_
					Grouting In	formation	Well Grouted?	Yes No	Not S	Specified
					f	own Source of Geet ected upon comp	Contamination Direction pletion?	Yes	No	Туре
					Pump Manufacture Model Numb Length of dre	r's name	nstalled D HP ft Capacity	ate Installed Vol	lt Typ	
					Abandoned		use and not sealed		Yes	□ No
					Variance Was a varian	ice granted from th	ne MDH for this we	ell?	Yes	☐ No
					Miscellaneo First Bedrock Last Strat Located by	indetermina		Aquifer Depth to Bed	łrock	ft
Remarks					Locate Metho System Unique Num	od Digitiza UTM - NAD8 ber Verification	33, Zone 15, Meters	Map (1:24,000) (1:24,000) (1:24,000)	76 Y 498	81889 I/05/2021
					Angled Dril					
					Well Contra Zuercher, Licensee F	Al Well	Lic.	6202R or Reg. No.	Name of D	Priller
Minnesota W	ell Index	Report	t	28	0700				Printed	on 06/01/2022

532687

County Ramsey

Quad St Paul East

Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 08/15/1994 02/14/2014

HE-01205-15

Well Name	Township	Range	Dir Section	Subsect	ion	Well Depth		Depth Comple	ted Date	Well Completed	l
HAYDEN	29	22	W 23	null		13 ft.		13 ft.	08/18	3/1993	
Elevation	Elev. Me	ethod				Drill Method	Cable To	ool	Drill Fluid		
Address						Use elevat	or			Status	Active
C/W	1298 VAN D	YKE ST S	T PAUL MN			Well Hydrofra	actured?	Yes 🗌	No From	To	
						Casing Type			Joint	Welded	
Stratigraphy I		Б	T. (C.) C		TT 1	Drive Shoe?			Above/Belo	W	
Geological Mat CLAY	епаі	From 0	` '	olor ED	Hardness MEDIUM	Casing Diame		Veight			
CLAT		v	13 K	LD	WIEDICW		13 ft.	62.5 lbs./ft.			
						Open Hole	From	ft.	То	ft.	
						Screen?		Type	Make		
						Static Water	Level	face	Measure	08/18/1993	
									Medsure	00/10/1//2	
						Pumping Le	vel (below l	and surface)			
						Wellhead Co	ompletion				
						Pitless adapter				Model	
							Protection le (Environn	1 1 nental Wells and	2 in. above grade Borings ONLY)		
						Grouting In		Well Grouted		No Not S	Specified
						Material		I	Amount	From 7	Го
						neat cement		2	2.5 Sacks	11 ft. 1	3 ft.
						Nearest Kno	own Source	of Contamination	on		
						Well disinfe	eet ected upon c	Direction ompletion?	Yes	☐ No	Type
						Pump Manufacturer		ot Installed	Date Installed		
						Model Numb		HP		Volt	
						Length of dro Abandoned	op pipe	ft Capaci	ty g.p.	Тур	
							y have any no	t in use and not sea	led well(s)?	Yes	No
						Variance					
								m the MDH for this	s well?	Yes	☐ No
						Miscellaneo First Bedrock Last Strat			Aquif Depth to		ft
Remarks						Located by Locate Metho	od				
PIT 4' BELOW O	GRADE.					System Unique Numb	UTM - NA	AD83, Zone 15, Me	eters X	Y Input Date	
						Angled Drill	l Hole				
						Well Contra	nctor				
						Midwest E Licensee E		I	L0002 Lic. or Reg. No.	STANGI Name of I	
Minnesota	Well Index	Repor	t		532	2687				Printed	on 06/01/2022

544043

County Ramsey

Quad Lake Elmo

Quad ID 102B

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 06/14/1996 04/08/2014

Well Name	Township	Range	Dir Section W 24	Subsection	Well Depth		epth Completed		Well Completed	l
ROSEWOOD	29 Elev. Me		W 24	null	34 ft. Drill Method		eft.	05/26/	1994	
Elevation Address	Elev. Me	ınou						Drill Fluid	Status	Active
					Use elevar					Active
Contact	1995 OAKCI	REST AV V	V ST PAUL MI	N 55113	Well Hydrofr		Yes No	From	To	
Stuationanhy In	formation				Casing Type Drive Shoe?		No	Joint		
Stratigraphy In	iormation				Drive Snoe:		110	Above/Below	<u>′ </u>	
					Open Hole	From	ft.	To	ft.	
					Screen? [Туре	Make		
					Static Water	r Level				
					30 ft.	land surfac	e	Measure	05/26/1994	
					Pumping Le	evel (below lane	d surface)			
					W W 10	.				
					Wellhead C Pitless adapte	er manufacturer			Model	
					Casing	Protection	12 in	. above grade		
					Grouting In		well Grouted?		No Not S	Specified
					f	own Source of feet fected upon com	Contamination Direction pletion?	Yes	☐ No	Туре
					Pump Manufacture Model Numb	er's name	nstalled Da	ate Installed	⁷ olt	
					Length of dr	op pipe	ft Capacity	g.p.	Тур	
					Abandoned		use and not sealed v	vol1(a)2	□ v	□ N-
					Variance	ty have any not in	use and not sealed	wen(s):	Yes	∐ No
						nce granted from t	he MDH for this we	11?	Yes	☐ No
					Miscellaneo First Bedrock Last Strat			Aquifer Depth to I		ft
Remarks					Located by					
LAKEWOOD DR	IVE AND MARY	LAND IN M	IAPLEWOOD		Locate Metho System		83, Zone 15, Meters	X	Y	
					•	ber Verification	55, Zone 15, Metels		Input Date	
					Angled Dril	ll Hole				
					Well Contra	actor				
					Midwest I			L0002		
					Licensee I	Business	Lic.	or Reg. No.	Name of D	Driller
Minnesota	Well Index	Report	<u> </u>	54	44043				Printed	on 06/01/2022 HE-01205-15

544049

County Ramsey

Quad Lake Elmo

Quad ID 102B

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

06/14/1996

HE-01205-15

Update Date 04/08/2014

Well Name ROSEWOOD	Township 29	Range 22	Dir Sect	ion Subsec	tion	Well Depth 25 ft.	Depth 25 ft.	Completed	Date V 05/27/2	Vell Completed	
Elevation	Elev. Me		W 24	nun		Drill Method	Cable Tool		03/27/. Drill Fluid	1994	
Address	Elev. Me	tilou				Use elevat			Dim Fiulu	Status	Active
	LAKEWOOF	DD MAD	LEWOOD	MNI		Well Hydrofra	. 10				7101110
Well Contact	LAKEWOOD 1995 OAKCE							s No	From	To	
Stratigraphy Info		CEST AV V	V SI FAU	L MIN 33113		Casing Type Drive Shoe?	Single casing Yes N	0 🗆	Joint Above/Below	Welded	
Geological Mater		From	To (ft.)	Color	Hardness	Casing Diame		<u> </u>	ADOVE/DEIOW		
CLAY & SAND		0	16	TAN	MEDIUM	16 in. To	25 ft. 62.5 lt	os./ft.			
SAND		16	20	TAN	SOFT						
HARDPAN		20	25	RED	HARD						
						Open Hole	From	ft.	То	ft.	
						Screen?	Type		Make	11.	
						Static Water				05/07/1004	
						30 ft.	land surface		Measure	05/27/1994	
						Pumping Le	vel (below land sur	face)			
						Wellhead Co	ompletion				
						Pitless adapter			I	Model	
							Protection		above grade		
							e (Environmental W				
						Grouting In	Cormation We	ll Grouted?	Yes 1		ecified
						Material		Amo		From To	
						neat cement		2.5	Sacks	23 ft. 25	ft.
						Nearest Kno	own Source of Cont	tamination			
								rection			Type
							cted upon completion	on?	Yes	No	31
						Pump Manufacturer	Not Install	ed Dat	te Installed		
						Model Numb	er	HP	V	olt	
						Length of dro	p pipe ft	Capacity	g.p.	Тур	
						Abandoned					
						Does property	have any not in use a	nd not sealed w	ell(s)?	Yes	No
						Variance	. 16 . 4 30	STT C -4 : - 11	0	□ v aa □	٦ ,,
							ce granted from the MI	OH for this well		Yes	No
						Miscellaneo First Bedrock			Aquifer		
						Last Strat			Depth to B		ft
						Located by			•		
Remarks	~~.~~					Locate Metho	d				
PIT IS 13' BELOW	GRADE.					System	UTM - NAD83, Zo	one 15, Meters	X	Y	
							er Verification			Input Date	
						Angled Drill	Hole				
						Well Contra	ctor				
						Midwest D			L0002	STANGRE	
						Licensee E	usiness	Lic. o	r Reg. No.	Name of Dr	iller
					=	0.40					
Minnesota V	Well Index	Report	t		544	049				Printed o	n 06/01/2022

568241

County Ramsey
Quad
Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 03/12/2003 02/25/2022

Well Name	Township	Range	Dir Secti		tion	Well Depth		Depth Completed		Vell Completed	d
MW-9 RAMSEY	29	22	W 14	DDA		35 ft.	3	30 ft.	07/18/1	1995	
Elevation	Elev. Me	thod				Drill Method	Auger (no	n-specified)	Drill Fluid		
Address						Use monito	or well			Status	Sealed
Well	1759 WHITE	BEAR AV	/ MAPLEW	OOD MN 55	5109	Well Hydrofra Casing Type		Yes No	From Joint	То	
Stratigraphy Info	rmation					Drive Shoe?		No X	Above/Below		
Geological Materia		From	To (ft.)	Color	Hardness	Casing Diame	eter We	eight			
CLAY		0	1	DK. BRN		2 in. To	20 ft.	lbs./ft.			
CLAY		1	3	LT. BRN							
CLAY SAND		3	13	RED/BRN							
SILTY CLAY SA	ND	13	15	RED/BRN							
SANDY SILTY C	LAY	15	18	RED/BRN		Open Hole		C.		C.	
SILTY CLAY SA	ND	18	20	RED/BRN		_	From	ft. Type plastic	To Make	ft. TIMCO	
SILTY SANDY		20	33	RED/BRN		Diameter Diameter	Slot/Gauze	Length	Set	THITCO	
SILTY SANDY C	LAY	33	35	GRY/BRN		2 in.	10	10 ft.	20 ft.	30 ft.	
						Static Water	Level				
						23 ft.	land surfa	ace	Measure	07/18/1995	5
						Pumping Le	vel (below la	nd surface)			
						Wellhead Co	ompletion				
						Pitless adapter	_		N	Model	
						Casing X At-grad	Protection le (Environme	12 in ental Wells and Bo	n. above grade rings ONLY)		
						Grouting Inf	formation	Well Grouted?	X Yes	No Not	Specified
						Material		Ame	ount	From	То
						neat cement				0 ft. 1	17 ft.
							own Source o	of Contamination Direction			Т
						Well disinfe	ected upon co	mpletion?	Yes	X No	Type
						Pump Manufacturer		Installed D	ate Installed		
						Model Numb		HP	V	olt	
						Length of dro	p pipe	ft Capacity	g.p.	Typ	
						Abandoned	. 1	:	11/->9		V v
						Variance	y nave any not	in use and not sealed	well(s)?	Yes	s X No
							ce granted from	the MDH for this we	211?	Yes	X No
						Miscellaneou	us				
						First Bedrock			Aquifer		
						Last Strat			Depth to B	edrock	ft
Remarks						Located by					
MW-9						Locate Metho		D02 7 15 M-t		37	
WELL SEALED 07-	31-2000 BY 27	058				System Unique Numb	oer Verification	D83, Zone 15, Meters		Y Input Date	
						Angled Drill				input Dute	
						Well Contra					
						Thein Well			34050	THEIN	
						Licensee B	Business	Lic.	or Reg. No.	Name of I	Driller
Minnesota V	Vell Index	Repor	t		568	3241				Printed	1 on 06/01/2022
		-									HE-01205-15

598974

County Ramsey

Quad St Paul East

Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date 08/12/1999 03/14/2022

Well Name	Township	Range	Dir Secti		ction	Well Depth		Depth Complete		Well Complete	ed
DS #625	29	22	W 23	null		49 ft.		47 ft.		/1997	
Elevation	Elev. Me	thod				Drill Method	Cable To	ol	Drill Fluid		
Address						Use elevate	or			Status	Active
Well	1863 CLEAR	AV ST PA	AUL MN			Well Hydrofra Casing Type			Joint	Welded)
Stratigraphy Inf	formation					Drive Shoe?	Yes X		Above/Belov		
Geological Mater		From	To (ft.)	Color	Hardness	Casing Diame		/eight			
SANDY CLAY		0	20	BROWN	HARD	16 in. To	50 ft.	15.6 lbs./ft.			
SANDY CLAY		20	43	BROWN	MEDIUM	20 in. To	51 ft. ′	78.6 lbs./ft.			
SHALE		43	49	BROWN	MEDIUM						
						Open Hole	From	ft.	То	ft.	
						Screen?		Туре	Make		
						Static Water	Level				
						35 ft.	land surf		Measure	07/21/199) 7
						Pumping Lev	vel (below la	and surface)			
						Wellhead Co	mpletion				
						Pitless adapter	-	r		Model	
							Protection e (Environm	12 nental Wells and I	in. above grade Borings ONLY)		
						Grouting Inf	ormation	Well Grouted?	X Yes	No Not	t Specified
						Material			mount	From	To
						neat cement		2	Sacks	47 ft.	49 ft.
						Nearest Kno	wn Source	of Contaminatio	n		
						Well disinfe	eet ected upon co	Direction ompletion?	Yes	No	Type
						Pump Manufacturer		t Installed	Date Installed		
						Model Number		HP		Volt	
						Length of dro	p pipe	ft Capacity	y g.p.	Typ	
						Abandoned	y hava any not	t in use and not seek	nd well(s)?	□ v.	D N-
						Variance	mave any not	t in use and not seale	eu wen(s)?	Ye	es No
							e granted from	m the MDH for this	well?	Yes	X No
						Miscellaneou	ıs				
						First Bedrock			Aquife		
						Last Strat			Depth to	Bedrock	ft
Remarks						Located by Locate Metho	d				
PIT ELEVATION	IS 20 FEET FRO	M GRADE.				System		AD83, Zone 15, Met	ers X	Y	
						Unique Numb	er Verificatio	n		Input Date	
						Angled Drill	Hole				
						Well Contra			T 000 :	a= ·	aner a
						Midwest D Licensee B		T.i	L0004 c. or Reg. No.	STANC Name of	GRET, S. Driller
								Li		- 101110 01	
Minnesota '	Well Index	Repor	t		59	08974				Printe	ed on 06/01/2022
						l l	í				HE-01205-15

603061

Minnesota Well Index Report

County Ramsey St Paul East Quad

Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date

12/30/1999 03/03/2022

HE-01205-15

Received Date

Well Name Dir Section Subsection Well Depth **Depth Completed Date Well Completed** Township Range HILLCREST 29 22 W 23 486 ft. 486 ft. 09/00/1999 ADACDA Drill Method 1034 Drill Fluid Water Elevation Elev. Method LiDAR 1m DEM (MNDNR) Cable Tool Address Use irrigation Status Active Well Hydrofractured? C/W 2200 LARPENTEUR AV E ST PAUL MN 55109 Yes From No To Casing Type Step down **Joint** Welded Yes X **Drive Shoe?** No Above/Below Stratigraphy Information Geological Material From To (ft.) Color Hardness **Casing Diameter** Weight Hole Diameter DRIFT 0 SOFT 155 TAN 10 in. To 354 ft. 46.4 lbs./ft. 16 in. To 354 ft. LIMESTONE 187 **GRAY** HARD 155 16 in. To 155 ft. 62.5 lbs./ft. 10 in. To 486 ft. SANDSTONE/SHALE 187 343 **GRAY** HARD LIMEROCK 476 GRAY HARD 343 SANDSTONE 476 486 TAN **MEDIUM** Open Hole То 486 ft. From ft. 354 Screen? Make Type Static Water Level 09/03/1999 207 ft. land surface Measure Pumping Level (below land surface) 226 ft. hrs. Pumping at 500 g.p.m. Wellhead Completion Pitless adapter manufacturer Model X 12 in. above grade Casing Protection At-grade (Environmental Wells and Borings ONLY) Well Grouted? X Yes **Grouting Information** No Not Specified Material Amount From To ft. 354 17 0 ft. neat cement Cubic yards Nearest Known Source of Contamination North Direction feet Body of water Type Well disinfected upon completion? Yes No X Pump Not Installed Date Installed 09/29/1999 Manufacturer's name **GOULD** HP Model Number 60 Volt 460 8RJHC Length of drop pipe Capacity <u>650</u> Typ Submersible 260 g.p. Abandoned Does property have any not in use and not sealed well(s)? Yes X No Variance Was a variance granted from the MDH for this well? Yes X No Miscellaneous First Bedrock Aquifer Last Strat Depth to Bedrock 155 ft Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or M.G.S. NO. 3995. UTM - NAD83, Zone 15, Meters System X 499495 Y 4981491 Unique Number Verification Input Date Site Plan 03/03/2022 Angled Drill Hole Well Contractor Keys Well Co. 62012 RUSSELL, J. Licensee Business Name of Driller Lic. or Reg. No. 603061 Printed on 06/01/2022

801672

County Ramsey

Quad ID St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

06/26/2018

Update Date Received Date 06/26/2018 08/17/2015

HE-01205-15

Well Name Township SIZER, JEREMY 29	Range Dir Sec 22 W 23	tion Subsection		Well Depth 200 ft.		epth Completed 0 ft.	Date W 06/23/2	Vell Completed	
Elevation 1004 Elev. Metl	_	DEM (MNDNR)	C	Drill Method	Non-specifie		Drill Fluid	.015	
Address	IOU LIDAR IIII	DEM (MINDINK)		Use domes		ou Rotary	Dim riuiu	Status	Active
	AND CEDALII M	N 55110		Well Hydrofra		T 7			710070
C/W 2100 IDAHO A	AV E ST PAUL Mî	N 33119				Yes No	From Joint	То	
Stratigraphy Information				Casing Type Drive Shoe?	Single casi Yes	No	Joint Above/Below	2 ft.	
Geological Material	From To (ft.)	Color I	Hardness	Casing Diame			ADOVE/DEIOW	Hole Diameter	
CLAY	0 38	BROWN S	SOFT	4 in. To	168 ft.	lbs./ft.		8.7 in. To	166 ft.
SANDY CLAY	38 53	BROWN S	SOFT					4 in. To	200 ft.
CLAY ROCKS	53 120	GRAY I	MEDIUM						
SAND ROCK	120 124	GRAY I	HARD						
LIMEROCK	124 143		HARD	Open Hole	Enom 1		To 200	, ft	
SHALE	143 154		HARD	Screen?		56 ft. Гуре	To 200 Make) ft.	
S.S. SHALE	154 166		HARD						
S.S. SHALE	166 200	GRAY I	HARD						
				Static Water					
				119 ft.	top of casin	g	Measure	06/23/2015	
				Pumping Le	vel (below land	l surface)			
				148 ft.	4 hrs.	Pumping at	30 g	g.p.m.	
				Wellhead Co	ompletion				
				Pitless adapter	-	BAKER	N	Model SNAPP	Y
					Protection	12 in.	above grade		
						tal Wells and Bori			
				Grouting Inf	formation				pecified
				Material		Amo	unt Sacks	From To	
				neat cement		65	Sacks	п. 10	6 ft.
				Nearest Kno	wn Source of (Contamination			
				<u>50</u> fe		s Direction	Sej Yes	ptic tank/drain fi	eld Type
				Pump		stalled Da	te Installed		
				Manufacturer	U	RUNDFOS			
				Model Numb Length of dro	155011		5 Vo		
				Abandoned	p pipe <u>160</u>	ft Capacity	<u>15</u> g.p.	Тур	
					have any not in	use and not sealed w	vell(s)?	Yes	No
				Variance					
				Was a variand	ce granted from th	ne MDH for this wel	1? [Yes	No
				Miscellaneou	ıs				
				First Bedrock	Platteville l	Formation	_	St.Peter	
				Last Strat	St.Peter Sa		Depth to Be	edrock 124	ft
Remarks				Located by Locate Metho		sota Geological S ation (Screen) - M	•	15 matara)	
THIS IS THE SECOND WELL DRIL	LED UNDER THIS U	JNIQUE NUMBEI	R.	System	Digitiza	3, Zone 15, Meters	X 499		1816
THE FIRST WELL HAS UNIQUE N	O. 278585. IT WAS C	GAMMA LOGGED	2-24-2015.	Unique Numb	er Verification	Info/GPS f	_	_	26/2018
				Angled Drill	Hole				
				*** ** **					
				Well Contra			1.421	DENTATE	D E
				Licensee B	and Sons, Inc.	Lic. o	or Reg. No.	Name of Di	
Minnesota Well Index	Report		801	672				Printed of	on 06/01/2022

849084

County Ramsey

Quad St Paul East

Quad ID

103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 11/15/2020

 Update Date
 03/03/2022

 Received Date
 07/13/2020

HE-01205-15

Well Depth **Date Well Completed** Well Name Township Range Dir Section Subsection Depth Completed MW-1 ST PAUL 22 W 23 25 ft. 25 ft. 06/25/2020 AABABC Drill Method Elevation 1030 Elev. Method Drill Fluid LiDAR 1m DEM (MNDNR) Auger (non-specified) Address Use monitor well Status Active Well Well Hydrofractured? 2200 LARPENTEUR AV E ST PAUL MN Yes No X From To 250 ST PETER ST ST PAUL MN 55102 Contact Casing Type Single casing **Joint** X Drive Shoe? Stratigraphy Information Yes No Above/Below Geological Material From To (ft.) Color Hardness **Casing Diameter** Weight BLK/RED HARD SILTY SAND/ GRAVEL 0 17 2 in. To 15 ft. lbs./ft. WET SILTY SAND 17 25 RED/BRN HARD Open Hole То From ft. ft. Make JOHNSON Screen? Type slotted pipe X Slot/Gauze Diameter Length Set 2 in. 10 10 15 ft. 25 ft. Static Water Level 06/25/2020 land surface Measure Pumping Level (below land surface) Wellhead Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? X Yes **Grouting Information** No Not Specified Material Amount From To ft. 12 bentonite 2 Sacks 4 ft. neat cement 2 Sacks ft. 4 ft. Nearest Known Source of Contamination Direction feet Type Well disinfected upon completion? Yes X No Pump Date Installed Not Installed Manufacturer's name HP Model Number Volt Length of drop pipe Capacity g.p. Typ Abandoned Yes X No Does property have any not in use and not sealed well(s)? Variance Was a variance granted from the MDH for this well? Yes X No Miscellaneous First Bedrock Aquifer Quat. Water Last Strat Depth to Bedrock ft sand+silt Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters System X 499325 Y 4982027 Unique Number Verification Info/GPS from data Input Date 11/18/2020 **Angled Drill Hole** Well Contractor Thein Well Co., Inc. 1337 HILBRANDS, B. Licensee Business Lic. or Reg. No. Name of Driller 849084 Printed on 06/01/2022 Minnesota Well Index Report

849085

County Ramsey

Quad St Paul East Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 11/15/2020 **Update Date** 03/03/2022 **Received Date** 07/13/2020

HE-01205-15

Well Name Township	Range	Dir Section			Well Depth		Depth Completed		Well Completed	d
MW-2 ST PAUL 29	22	W 23	ADDDAC	3	20 ft.		0 ft.		5/2020	
Elevation 1011 Elev. Me	thod	LiDAR 1m DE	M (MNDNR)		Drill Method	Auger (non	i-specified)	Drill Fluid		
Address					Use monito				Status	Active
		V E ST PAU	L MN		Well Hydrofra	ctured?	Yes No	X From	To	
Contact 380 ST PETE	R ST ST I	PAUL MN			Casing Type			Joint		
Stratigraphy Information Geological Material	From	To (ft.)	Color H	ardness	Drive Shoe?	Yes	No	Above/Belo	W	
SANDY CLAY COBBLES	0			ARD	Casing Diame 2 in. To	ter Wei 10 ft.	lbs./ft.			
WET SILTY SAND	12		RED/BRN H		2 III. 10	10 π.	108./11.			
					Open Hole	From	ft.	То	ft.	
					Screen? Diameter 2 in.	Slot/Gauze 0	Type plastic Length 10 ft.	Make Set 10 ft		
					Static Water	Level land surfa	ce	Measure	06/25/2020	0
								1,104,541.0	00/25/2020	
					Pumping Lev	vel (below lar	nd surface)			
						manufacturer Protection		n. above grade	Model	
					Grouting Inf		well Grouted?	Yes Yes	No Not	Specified
					Material	ormation		nount	_	То
					bentonite		1	Sacks	4 ft. 7	
					neat cement		2	Sacks	ft. 4	4 ft.
							f Contamination			
					Well disinfe	et cted upon con	Direction npletion?	Yes	X No	Type
					Pump Manufacturer	's name		Date Installed		
					Model Number Length of dro		HP ft Capacity		Volt	
					Abandoned		ft Capacity	g.p.	Typ Yes	s X No
					Variance	any not n	. ase and not scarcu		1 es	, 110
						e granted from	the MDH for this w	ell?	Yes	X No
					Miscellaneou First Bedrock Last Strat	sand+silt		_	er Quat. Water Bedrock	ft
Remarks					Located by Locate Metho		esota Geological	•	0.715	
					System	215111	zation (Screen) - 2083, Zone 15, Meters		99578 Y 49	981319 1/18/2020
					Angled Drill		1110/010		- 1	
					Well Contra					
					Thein Well	·	т.	1337	HILBRAI	
					Licensee B	usiness	Lic.	or Reg. No.	Name of I	Dillier
Minnesota Well Index	Repor	rt		849	085				Printed	d on 06/01/2022

849086

Minnesota Well Index Report

County Ramsey

Quad St Paul East

103A

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

Update Date 03/03/2022 **Received Date** 07/13/2020

HE-01205-15

Well Name Well Depth **Depth Completed Date Well Completed Township** Range **Dir Section** Subsection MW-3 ST PAUL 06/25/2020 29 22 W 23 DADCBB 30 ft. 30 ft. Drill Method 1014 Elevation Auger (non-specified) Elev. Method LiDAR 1m DEM (MNDNR) **Drill Fluid** Address monitor well Status Active Well Hydrofractured? Well 2200 LARPENTEUR AV E ST PAUL MN Yes No From To Contact 308 ST PETER ST ST PAUL MN Casing Type Single casing Joint X Drive Shoe? Strattigraphy InfoSination Yes Above/Below Geological Material From To (ft.) Color Hardness **Casing Diameter** Weight SANDY CLAY GRAVEL 0 BLK/RED HARD 23 2 in. To 20 ft. lbs./ft. SILTY SAND 23 30 RED/BRN HARD Open Hole From ft. To ft. Type plastic Make JOHNSON Screen? X Diameter Slot/Gauze Length Set in. 0 10 ft. 20 ft. 30 ft. Static Water Level land surface Measure 06/25/2020 Pumping Level (below land surface) Wellhead Completion Pitless adapter manufacturer Model X Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY) Well Grouted? **Grouting Information X** Yes Not Specified From То Material Amount ft. 17 bentonite 2 ft. Sacks 2 ft. 4 ft. neat cement Sacks Nearest Known Source of Contamination Direction feet Type Well disinfected upon completion? X Yes No Pump Not Installed Date Installed Manufacturer's name HP Model Number Volt Length of drop pipe ft Capacity Typ g.p. Abandoned Does property have any not in use and not sealed well(s)? Yes X No Was a variance granted from the MDH for this well? Yes X No Miscellaneous Aquifer Quat. Water First Bedrock Last Strat Depth to Bedrock ft sand+silt Located by Minnesota Geological Survey Remarks Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters X 499412 System Y 4980929 Unique Number Verification Input Date Info/GPS from data 11/18/2020 Angled Drill Hole Well Contractor Thein Well Co., Inc. 1337 HILBRANDS, B. Licensee Business Lic. or Reg. No. Name of Driller 849086 Printed on 06/01/2022

1000025701

County Ramsey

Quad St Paul East

Quad ID 103A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date Update Date

04/07/2021 04/07/2021

HE-01205-15

Well Name Township Range Dir Section Subsecti WOJTOWICZ, L. 29 22 W 14 DDDBC	_		Pate Well Completed 9/00/1956
Elevation 1024 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	Drill Fluid	
Address	Use		Status Unknow
	Well Hydrofr	actured? Yes No Fro	om To
	Casing Type		
Stratigraphy Information	Drive Shoe?		
	Open Hole	From ft. To	ft.
	Screen? [ake
	Static Wate	r Level	
	Pumping Le	vel (below land surface)	
	Casing	r manufacturer Protection	
	Grouting In	de (Environmental Wells and Borings ONL' formation Well Grouted? Yes	Y) No X Not Specified
	f	own Source of Contamination eet Direction	Туре
	Pump	ected upon completion? Yes Not Installed Date Installe	d
	Manufacture Model Numl	per HP	Volt
	Length of dr	op pipe ft Capacity g.	p. Typ
	Abandoned Does proper	y have any not in use and not sealed well(s)?	☐ Yes ☐ No
	Variance		
	Was a variar	ce granted from the MDH for this well?	Yes No
	Miscellaneo		
	First Bedrocl Last Strat		quifer th to Bedrock ft
	Located by	Minnesota Geological Survey	
Remarks WORK ON EXISTING WELL	Locate Methorstone System	Digitization (Sereen) Triap (112 i)	
		ber Verification Address verification	X 499430 Y 4982184 Input Date 04/07/2021
	Angled Dril	l Hole	
	Well Contra	actor	
	Zuercher,	Al Well 6202R	
	Licensee I	Business Lic. or Reg. No	o. Name of Driller
Minnesota Well Index Report	1000025701		Printed on 06/01/2022

Appendix F RAP Implementation forms

DUST N	ONITO	RING LOG							BRAUN INTERTEC
Project Name								Page of	INILKILO
Project Numb	er and Task No	:							
			Project Location:						
		Wind	Dust M	leter Reading (mg/m²)					
		Direction/Speed/W							
Date	Time	eather	Upwind		Work Zone	Downwind	Work Zone Location	Record By	Comments
	-								
		ļ							
	1	1							

INTERTEC

Field Report Form

Project No.:		Date:
Project Name:		Personnel:
Location:		Time On Site: Time Off Site:
☐ Photos taken a	and documented.	Project Manager:
Other Braun Inter	rtec Staff:	Weather (temperature, wind speed and direction, etc.):
Ctrici Braan inter	i co stani	weather (temperature, wind speed and direction, etc.).
	(subcontractors, site superintendent, e on site and time off site):	PPE and Field Equipment Used (e.g., PID; include ID numbers, calibration information, etc.):
Work Completed	(include field scope, unexpected issues,	action items, log of communication, and site sketch):
		1

BRAUN	
INTERTEC	

Field Report Form

Project No.:	Date:						
Project Name:	Personnel:						
Location: Project Manager:							
Work Completed (include field scope, unexpected issues,	Nork Completed (include field scope, unexpected issues, action items, log of communication, and site sketch):						
Signatura							

Incident Report Form

Report Number: Project Title and Location: Project Number: Location of Incident: Names of All Personnel Involved	Report Date:	Incident Date:			
Describe the incident as it occur	red (use additional sheets, if n	ecessary):			
Names of Witnesses	Relationship to the Incider	nt Where They Can Be	e Reached		
Project Implications What is the cost impact to the project (e.g., lost days, man-hours, equipment)?					
What is the schedule impact to t	he project?				
loes the incident impact the scope of the project in other ways? If so, how?					

SAMPLE	CONTR	OL LOG			
Project Name: _					
Project Numbe	and Activity N	lumber:		Page of	
Sampling Date	Sampling Time	Sample Number (ID)	Analysis Required	Sample location, depth, description, purpose etc.	Date Sent to Lab

DOCUMENT ALL ACTIVITIES WITH PHOTOGRAPHS.

SITE HEALTH AND SAFETY PLAN

ESE PROJECT HEALTH AND SAFETY FIELD MEETING FORM

Date:	Time:	Project No.:
Project Nam	e:	
Location:		
Location		
Meeting Cor	nducted by:	
Topics Discu	ssed:	
Physical Haz	ards:	
Chemical Ha	zards:	
Personal Pro	tection:	
Special Site (Considerations:	
Fmergency I	nformation:	
	ation:	
		Attendees
<u>Nam</u>	ne/Company (printed)	 Signature
Meeting Cor	nducted by:	
	Signature	

Truck Manifest Log

Project No	mo:			CK Wallies	_	Project #	
Project Name: Excavator:							
Braun Per	sonnei:	·					
Purpose o	t Excavati	on:					
Haul Start	Time:			Haul End Time: _			
Load # Time Manifest # Cab Description Licen				License Plate	Truck	Soil Location (STA, depth, etc.)	PID
					Type*		
							+
							†
							
							
							+
							
							+
							<u> </u>
							
							+
							†
							
							
							+
							
							+
							+
Observation	ons/Notes	:					
* Truck Ty	pe: SD=Si	de Dump, Q=Q	uad, BD=Belly Dum	p, ED=End Dump			

BRAUN INTERTEC

(03/01/2016) Page ____ of ____